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APPLICATIONS OF THE CONJUGATE GRADIENT FFT METHOD IN
SCATTERING AND RADIATION INCLUDING SIMULATIONS
WITH IMPEDANCE BOUNDARY CONDITIONS

Abstract

The theoretical and computational aspects related to the application of the
Conjugate Gradient FFT (CGFFT) method in computational electromagnetics
are examined. The advantages of applying the CGFFT method to a class of large
scale scattering and radiation problems are outlined. The main advantages of
the method stem from its iterative nature which eliminates a need to form the
system matrix (thus reducing the computer memory allocation requirements) and
guarantees convergence to the true solution in a finite number of steps. Moreover,
since the CGFFT algorithm is highly vectorizable, it can be efficiently implemented
on supercomputers and multiprocessor machines.

Results are presented for various radiators and scatterers including thin cylin-
drical dipole antennas, thin conductive and resistive strips and plates, as well as
dielectric cylinders.

Solutions of integral equations derived on the basis of generalized impedance
boundary conditions (GIBC) are also examined. These boundary conditions can
be used to replace the profile of a material coating by an impedance sheet or insert,
thus, eliminating the need to introduce unknown polarization currents within the
volume of the layer. Moreover, by applying these surface boundary conditions,
the difficulties associated with the calculation of the Green’s function are avoided.
Impedance boundary conditions of up to the third order are employed and shown to
be compatible with the basic CGFFT formulation, allowing an efficient simulation
of large coated structures and filled cavity-backed apertures by further reducing
the memory demand. For the purpose of validation of these simulations, a general
full-wave analysis of two- and three-dimensional rectangular grooves and cavities
is presented which will also serve as reference for future work.
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CHAPTER 1

INTRODUCTION

Despite its long life in classical electrodynamics, the study of “Radiation” and
“Scattering” has enjoyed renewed interest in recent years, particularly in connection
with improved antenna designs required by the technological progress in radio com-
munication, advances in radar signature analysis and control, and more recently, the
growing computing power offered by high speed computers. These have contributed
to the emergence of Computational Electromagnetics (CEM), the numerical study of
electromagnetic wave phenomena.

When the operating frequency is such that the object’s linear dimensions are
comparable to the wavelength, the available high frequency methods are no longer
applicable and more accurate formulations must be adopted. Moreover, these asymp-
totic techniques are predominantly suitable for conducting bodies of canonical ge-
ometries and shapes. Therefore, they cannot be employed for simulating material
bodies which constitute modern composite vehicles and structures. Furthermore,
because of an increase in the complexity of the formulations and corresponding lim-
itations on justifiable approximations, the need for consistent and stable numerical
schemes arises to ensure convergence of the solutions under consideration. These

restrictions, coupled with the limitations on available computer resources (memory



and speed), represent a challenge in the modeling of large scale problems. It is this

class of problems that this study attempts to address.

1.1 Motivation

In radiation and scattering, we are interested in defining the electromagnetic fields
in the presence of a source distribution. The key to the solution of any such problem
is a knowledge of the induced current density on the surface or in the volume of
the antenna or scatterer. Once this is found, the radiated or scattered fields can be
computed via the standard radiation integrals.

The induced volumetric current density J on the body of the scatterer or radiator

satisfies an integral equation which may be expressed in functional form as
£ = A[J] (1.1)

where £' is a vector representing the impressed field and A is an integrodifferential
operator (functional) relating the impressed fields to the induced current. Tradition-
ally, equation (1.1) is solved directly by discretizing the unknown current density
and forming a linear system of equations. Typically, such a discretization results
in a square matrix demanding a memory storage of order O(N ?), where N is the
number of unknown coefficients in the current density expansion. The system of
equations is usually solved by standard matrix inversion methods such as Gaussian
elimination or LU decomposition. However, the limitations on available comput-
ing resources (including memory and processing time) associated with the numerical
formulation of large systems, limit the range of applicability of such direct methods
to relatively low frequencies. In addition, for large scale simulations, the memory
demand of these methods results in prohibitive storage requirements and, thus, tra-

ditional matrix inversion approaches are not attractive and alternative methods are



needed.

To address this ne«d, iterative approaches have been used by researchers. In
iterative methods, an initial solution for the current distribution is assumed, and
this is improved through successive iterations. The process continues until a pre-
assigned accuracy (tolerance) is reached. The main advantage of iterative methods
is that the calculations can proceed without a need to generate the system matrix,
because iterative methods often require only the multiplication of matrices with
vectors. This reduces the memory requirement to a lower order O(N) and therefore
renders iterative schemes suitable for large scale simulations. Furthermore, while
a matrix inversion approach may fail to yield an accurate solution due to a large
condition number of the matrix operators, an iterative method in such cases merely
requires more iterations before reaching convergence.

In this study, we will explore the application of an iterative scheme, namely the
Conjugate Gradient Method (CGM), in the solution of systems of equations arising
in scattering and radiation problems. From its introduction nearly forty years ago
[1, 2], the CGM has been of considerable interest to mathematicians and engineers,
primarily because, in theory, it ensures convergence for arbitrary initial estimates-a
feature not shared by many of the iterative algorithms used in the past.

The guaranteed convergence of the conjugate gradient method, as well as its effi-
cient storage requirements as an iterative scheme, are prerequisites for its application
to general configurations of interest. Another advantage of the CGM, however, stems
from an interesting property shared by the integrodifferential operators encountered
in most radiation and scattering problems. For these problems, A is a convolution
operator involving the induced current density and the pertinent Green’s function.

Thus, by employing the convolution theorem, the evaluation of the functional reduces



to simple algebraic operations on the Fourier transforms of the convolved quantities.
This simplification often results in a notable improvement in the speed of the calcula-
tions (N log N in contrast to N2). In practice, the Fourier transforms are calculated
efficiently via the fast Fourier transform (FFT) [3]. A CGM algorithm which in-
corporates the FFT to carry out the convolution operations is often referred to as
CGFFT method of solution [4].

Other iterative methods utilizing the FFT algorithm have also been applied to
a number of scattering problems [5]-[7]. However, these solution techniques usually
suffer from two major defficiencies common to most iterative approaches: 1) conver-
gence is not strictly guaranteed, and 2) convergence is often slow. The conjugate
gradient method virtually eliminates the first problem because it guarantees mono-
tonic convergence throughout the process. As for the second problem, the number of
iterations required for the conjugate gradient method to yield a reasonable accuracy
is often a fraction of the total number of unknowns. This depends primarily on the
distribution of the dominant eigenvalues of the operator projected onto the system
matrix. It has been argued convincingly (8] that the standard conjugate gradient
method requires roughly twice as much computation time per solution as the Gaus-
sian elimination, which is an O(N?) operation. However, the CGFFT is considerably
faster since it requires only 4N(1+log, N) operations per iteration-an overall O(N?)
operation.

The speed of the CGFFT method can be improved further by incorporating the
subsectional expansion (basis) functions into the algorithm. In direct methods, it is
well known that the use of appropriate expansion functions to represent the unknown
current distribution plays an important role in the accuracy and convergence of the

solutions. In fact, a large body of literature exists on various types of basis functions



and their implementation and performance in connection with direct approaches [9])-
[11]. This is not the case with regard to the CGFFT method and, therefore, it is of
interest to study the incorporation of these functions in the context of the CGFFT.
It was found in the course of this research that such a treatment results in a drastic
improvement (up to 100 percent) in the convergence rate of the method depending
on the type of basis that is employed for the current expansion.

Another area of interest addressed in this study is the incorporation of the gen-
eralized impedance boundary conditions [12, 13} in the CGFFT method. General-
ized Impedance Boundary Conditions (GIBC) are higher order boundary conditions
which involve derivatives of the fields beyond the first. They have been found to
be more effective than the traditional first order (standard) conditions in modeling
thick dielectric coatings and layers [14]. The GIBCs have been successfully utilized
in a number of analytical and asymptotic applications such as the Weiner-Hopf tech-
nique and function theoretic approaches [14]. However, their utility in numerical
methods has not been studied beyond the first order [15]. Applying these conditions
on the surface of a dielectrically coated scatterer circumvents the need for sampling
within the target’s volume and hence considerably reduces the number of unknowns
required in the discretization of the problem. However, solution of these problems by
direct methods is challenging due to the difficulty in handling higher order deriva-
tives involved in the formulation. On the other hand, when the CGFFT method is
employed, the derivatives may be carried out in the transform domain without much
difficulty. These features make the formulation of such structures by generalized
boundary conditions highly desirable and, therefore, a part of this study is devoted
to the implementation and numerical study of GIBCs in connection with the CGFFT

method.



Before closing this section, we remark that an inherent limitation of the itera-
tive solution methods is their requirement that the solution process be repeated for
each excitation. In direct approaches, on the other hand, once the system matrix is
inverted, the solution for any excitation is virtually at hand. For this reason, itera-
tive solution methods may be computationally intensive in those scattering problems
where the target’s responses to a number of different excitations are of interest. This
may be the case, for a example, when’generating the backscatter pattern for an
object, where the iterative solution must be repeated for each excitation. A partial
remedy in this case is to use the results of the previous excitation as the starting
point (initial guess) for the solution of the next excitation. For a certain class of large
problems, however, the memory consideration may outweigh the possible disadvan-
tages in speed associated with the multiple excitations. Therefore, in choosing an
iterative method for these problems, the intensity of the computations and accuracy
requirements as well as the merits of low memory allocations offered by such meth-
ods must be carefully examined. In this regard, some vector and parallel processing
features offered by modern computing facilities are important in reducing the CPU
time in reaching convergence. At any rate, for problems involving a single excitation
such as antenna radiation problems, the CGFFT is generally much faster than the

general purpose matrix inversion techniques.

1.2 Scope

This dissertation is divided into three parts. Part One (Chapters II through IV)
presents the CGFFT method as applied to radiation and scattering. In particular,
Chapter II discusses the basic formulation and the incorporation of the subsectional

expansion functions into the CGFFT method. Chapters III and IV present applica-



tions of the method to one and two dimensional problems classified according to the

dimensionality of the employed Fourier transforms, respectively. These include
e Radiation from thin wire dipoles,

Scattering by flat and cylindrical strips,

e Radiation of cylindrical reflector antennas,
e Radiation of dipoles in the presence of flat plates, and

Scattering by dielectric cylinders.

For each application, the pertinent integral equations are derived and placed in a form
suitable for a solution via the CGFFT method. Chapter V presents the generalized
impedance boundary conditions and their incorporation into the CGFFT formulation
for the simulation of two- and three-dimensional impedance sheets.

Part Two presents a general study of a class of cavity structures and their anal-
ysis using CGFFT in conjunction with the GIBCs. In particular, Chapter VI is a
study of two-dimensional grooves of infinite extent, while Chapter VII presents a
corresponding study of three-dimensional cavities recessed in perfectly conducting
ground planes.

Part Three discusses a vector-concurrent implementation of the CGFFT algo-
rithm on supercomputers and multiprocessor machines. Chapter VIII presents re-
sults from a numerical implementation of an optimized CGFFT algorithm, which
further illustrate the potentials of the CGFFT in solving large electromagnetic scat-
tering and radiation problems.

In most cases, the accuracy of the solutions is confirmed by a comparison of

the obtained results with available measured data or data obtained from alternative



solution techniques. Some of the presented results are out of the reach of direct
solution techniques and can, thus, serve for validating future methodologies for large

scale electromagnetic simulations.
1.3 Basic Concepts

When an object is exposed to electromagnetic fields, the scattered field U’ is
defined as the difference between the total field U7 in the presence of the ob ject and

the incident field U that would exist if the object were absent. That is
U=UT-U' (1.2)

The fundamental laws governing the behavior of electromagnetic fields in space

and time are Maxwell’s equations commonly expressed in differential form as

VXE = —-a—t (13)
dD

VxH = —+1 (1.4)

V:-D = p (1.5)

V-B = 0 (1.6)

where
E = Electric field intensity, volts/m
H = Magnetic field intensity, amperes/m
D = Electric flux density (displacement), coulombs/m?
B = Magnetic flux density (induction), webers/m?
J = Electric current density, amperes/m?

p = Electric charge density, coulombs/m?



and we shall use MKSC units throughout this study as indicated. The two curl
equations (1.3) and (1.4) are Faraday’s induction law and the generalized Ampere’s
circuit law, respectively, while the two divergence relations (1.5) and (1.6) are Gauss’
law for the electric and magnetic fields, respectively. The media interacting with the
electromagnetic fields are characterized by the so called constitutive relations and can
be classified according to their molecular structures and properties of their associated

bound charge particles. For a sufficiently simple medium these relations are

D = ¢E (1.7)
B = ¢ H (1.8)
J = ¢E (1.9)

where ¢, ¢ and o denote the permittivity, permeability, and conductivity of the
medium, respectively.
In the presence of stationary material interfaces(the surface of a scatterer, say),

an electromagnetic field satisfies the implicit(natural) boundary conditions

Ax(E—E) =0 (1.10)
Ax(H—Hy) =K (1.11)
A-(D;—D;) =p, (1.12)
A-(B,—By) =0 (1.13)

where K and p, denote surface current and charge densities at the interface separating
the two regions to which subscripts 1 and 2 correspond and # is the unit normal to
the interface(usually taken to be outward with respect to the scatterer). The above
boundary conditions are easily established on the assumption that the tangential

components of D and B remain finite at the interface surface. It should be noted,
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however, that the last two conditions are not independent of the first two for time-
varying fields and are, therefore, redundant [16]. Moreover, if one medium is perfectly
conducting (0 — o0), no electric field exists in that medium as asserted by (1.9).
Therefore, it follows from (1.10) that the tangential component of E is zero at the
surface of a perfect conductor.

In addition to (1.10)-(1.13), boundary conditions must be imposed at infinity
to obtain unique solutions to the radiation problems. Physically, these radiation
conditions require that solutions which represent outgoing waves traveling in a lossy
medium vanish at infinity.

Throughout this work we will consider harmonic time varying fields and adopt

the time convention e’*. Thus, the Maxwell equations (1.3) and (1.4) become

VXxE = —jwB (1.14)

VxH = juD+7J (1.15)

with the explicit time dependence suppressed. The constitutive parameters under
the time harmonic assumption are, in general, complex quantities. In particular, for

a conducting medium, Ampere’s law (1.15) reads
VxH=J.+J.+ jwD (1.16)

where J, represents the externally impressed current source and J, is the conduction
current generated in the medium due to ohmic loss. Employing the constitutive

relations (1.7) and (1.9), equation (1.16) can be rewritten
VxH=1J,+ jw(e - jo/w)E (1.17)
where, the quantity

€ =€—jolw (1.18)
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may be identified as the complex permittivity of the medium.

The solution of a scattering problem consists of finding the solution of Maxwell
equations which satisfy the boundary conditions at the surface of the scatterer and
which displays the proper behavior at infinity. Typically, this is carried out by deriv-
ing a suitable integral equation in terms of the unknown current density excited on
the scatterer. Two popular integral equations for the time-harmonic electromagnetic
fields are the electric field integral equation (EFIE) and the magnetic field integral
equation (MFIE). The EFIE enforces the boundary condition on the tangential elec-
tric field and can be used for both closed and open surfaces. The MFIE, on the other
hand, enforces the boundary condition on the tangential components of the magnetic
field and remains valid only for closed surfaces [17]. Since we are interested in both
types of scatterers, the EFIE is developed and applied in this study.

An equation for E may be obtained from Maxwell’s equations by eliminating Hin
(1.14) and (1.15) and using (1.7)-(1.9). Thus, assuming a homogeneous surrounding

medium, we have for the scattered electric field
V x V x E® — k?E® = —jwpd (1.19)

where k = w./j€ is the wave number in the medium. This is known as the vector

wave equation and the solution may be expressed as (18, 19]

E* = —jkZ ///V B(r;r')- 3(r') dv’ (1.20)

where Z = \/u/e is the intrinsic impedance of the medium, I' denotes the electric

dyadic Green’s function in unbounded space given by

L(r;r') = (i + %VV) G(r;r') (1.21)
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and G is the scalar Green’s function
e—j k Il‘ -r |

Glrir) =~

(1.22)

In the above, r and r’ denote the field and source points, respectively and an explicit

expression of I' in Cartesian coordinates is

(a4l 1@ 1 &\

1+ 557 ©oao;  F320;
1 & 1 8 1 & ,
f‘ = Fb—yéz (1 + p'a?) Fm G(r,r ) (1'23)

_1_ 32 i_az (1 + _1_6_2)
\  k29z0z k%2 020y k? 0z2 )

The magnetic field is then obtained from Faraday’s law (1.14).

Equation (1.20) in conjunction with the appropriate boundary conditions on the
tangential component of the total electric field gives the EFIE integral equation to
be solved for the unknown current J. The specific form of this integral equation
depends on the particular problem under study. Once the current distribution is
evaluated from the integral equation, the sca.tfered field throughout space may be
calculated from the scattering integral (1.20).

In radar applications, the target is completely characterized for the radar system
by a quantity known as the radar cross section (RCS) or echo area denoted by o(not
to be confused with the conductivity ¢). It is a measure of the reflective strength of

the target and is mathematically defined as

R’% (1.24)

o= lim 4r
R—o00

where P, is the power flux density of the scattered wave in a specified direction at a

distance R from the scatterer, and P; is the power flux density of the incident plane



13

wave. The radar cross section is in general a function of frequency, polarization,
and angle of incidence. When the incident and pertinent scattering directions are
coincident but opposite in sense, (1.24) provides the monostatic or backscattering
cross section.

For two-dimensional targets which are infinite in extent along a given direction,
the scattering parameter is referred to as the radar cross section per unit length or

echo width and is defined as

0¥ = lim 27rp2% . (1.25)

p—00 f

When the scatterer is long but finite in one dimension, the physical optics ap-
proximation may be used to relate the three-dimensional radar cross section of the
target to the associated two-dimensional echo width calculated on the assumption of
infinite length. Hence, for plane wave ‘{lumination normal to the long dimension of

the scatterer, we have
3d £12 24
o = 2(;) o (1.26)

where ¢ denotes the length of the target in the long dimension.
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Part 1

THE CONJUGATE GRADIENT
FFT METHOD



CHAPTER II

THE CGFFT FORMULATION

2.1 Introduction

The integrodifferential equations considered in radiation and scattering have the

general form

Ei(r) = n(r)3() + [[[ B(r - r))- 3() av (2.1)

where E' denotes the excitation field, J is the unknown current density vector, Tis
the associated dyadic Green'’s function, r and r’ specify the observation and integra-
tion points and 7 is the scalar function which depends on the electrical properties of
the scatterer or radiator.

In general, the above integral equation may be solved using direct methods such as
the Method of Moments [20]. However, as the size of the problem increases, iterative
techniques become more attractive for the solution of such equations. This is mainly
because iterative methods avoid the process of matrix inversion which is subject to
numerical instability for ill-conditioned matrices. Also, these schemes often involve
only the multiplication of matrices with vectors and thus do not require an explicit

storage of the system matrix.

15
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2.2 Description of the Conjugate Gradient Method

The conjugate gradient method is a nonlinear semi-direct purely-iterative scheme.
That is, assuming no truncation and roundoff errors, the exact solution is obtained
in a finite number of steps depending on the number of independent eigenvalues
of the operator matrix. This is achieved by applying the method to the normal
equations obtained by premultiplying the system matrix by its adjoint. Moreover,
the solution is improved at a monotonic rate throughout the process and convergence
is guaranteed for a given number of unknowns and as the order of approximation
is increased [21]. Convergence is accomplished via a systematic orthogonalization
of the solution vector with respect to the residual vector defined as the difference
between the left and right hand sides of the system at the end of each iteration.
That is, for a system representing N unknowns, the solution vector is constructed
from a set of N linearly independent (mutually conjugate) vectors orthogonal to the
residual vectors. Since these also form a linearly independent set, the exact solution
is obtained at the N-th iteration, but in general the solution can be constructed,
rather accurately, with only a few of the orthogonal vectors that span the solution
space. As a result, the desired tolerance is achieved in less than AV iterations.

The method starts out with an initial guess Jo and a corresponding residual error
Ro. In each iteration, the residual vector is minimized not only along each local search
direction but also over the entire span of search directions. To this end, the solution
is expanded in terms of search vectors which would be generated by the modified
Gram-Schmidt orthogonalization scheme when applied to the sequence of residual

vectors as the basis functions’. The set of search vectors {P,}, so constructed are

!The choice of the N-dimensional coordinate unit vectors as the basis functions would yield
Gaussian elimination.
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mutually A-orthogonal or conjugate (as opposed to orthogonal)
<P,AP;]>=0 , i#j (2.2)

The significance of this set of directions is as follows: for a quadratic function,
successive line minimizations along a conjugate set of directions will achieve the
minimum without the need to repeat minimization in any direction. Consequently,
the minimum is achieved at the end of a finite number of steps. For nonquadratic
functions, this guarantees quadratic convergence as the process goes on.

A version of the conjugate gradient algorithm to be used herein is [4]
Ro = A[Jo) - E
Po = —b_; A°[Ry]
Main Iteration Loop

1
t, = ————
AP,

Jn+l = Jn + tnpn

R.i1 =R, +t,AP,] (2.3)
-1
T AR
Pn+l =P, - buAa[R»n+1]
IR| 2
NE| ~

Repeat If Necessary

The norm and the adjoint op=rator are defined in terms of the inner product as

U =< U,U > (2.4)
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and

< A[U],V >=< U, A*[V] > (2.5)

It may be shown that [21]

AP = 7@ I + [ Be =) I dv (26)
where » denotes the complex conjugate.

2.3 Conjugate Gradient FFT Formalism

The scattering integral in (2.1) is of convolution type and can, therefore, be
evaluated in the spectral domain by invoking the convolution theorem. To describe
this process, we must introduce the forward and inverse Fourier transformations. For

one-dimensional functions, the Fourier transform pair is
gk) = [ g(z)e*erda (2.7)
1 foo _ ..
9(2) = 5= [ Glk)er dk, (2:8)

where k, is the spectral variable and we use the following symbolism to indicate the

relationship among the transform pair

9(z) <= §(f:) (2.9)

Based on the above definitions, the convolution theorem is stated as [22):

[ 0z = #)d" = gla)« hiz) Lo 5ke) - Rk 2.10)

Similarly, the two dimensional Fourier transform pair is defined as

(ks k) / / 9(z, y)e~ik==+mv) gz gy (2.11)

00 00 .
g(l?, y) = (2#)2 4/—-00 -/—oo g(kzaky)eJ(k’:+h'y)dktdkl/ (212)
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with the convolution theorem expressed as

/_oo _[_oo 9(z', y")h(z — 2',y — y')dz’ = g(z,y) * h(z,y) é g(kz, k) - E(k,, k)

(2.13)
As usual, the transform of differentiated functions is given by
2 L jkgk) (2.14)

Using the Fourier transform notation, equation (2.1) can now be formally written

E'=nl+ F YT §) (2.15)

where F ~! denotes the inverse Fourier transform operator. Clearly, (2.15) avoids the
generation of the square matrix corresponding to the operator A implying a storage
requirement of O(N) as compared to O(N?) required with direct implementations.
The solution of (2.15) via the CGM will be referred to as the CGFFT solution
method..

The Fourier transforms implied in (2.15) are, of course, continuous whereas in
practice they will be replaced with discrete Fourier transforms (DFTs). It is, there-
fore, necessary that an accurate relationship of the transforms in the discrete and
continuous domains be established. Otherwise, a solution in one domain may not be
representative of that in the other. Alternatively, excessive sampling may be required
to represent the continuous syste:n.

Consider the finite-duration function g whose M consecutive sampled values cov-

ering the entire domain of its definition are given by

gn = 9(zn) z, = nlAz n=0,---,N-1 (2.16)
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The one-dimensional forward and inverse discrete Fourier transforms (DFT) of this

sampled train are defined as [22]

N-1
Gp= ) gae eIV (2.17)
n=0
and
1 N-1 ) N
=5 2 G (2.18)

=0

where the consecutive spectral samples g, are separated by the spatial frequency
interval Af; = 1/(NAz). Similarly, the two-dimensional DFT pair is defined as

M-1N-1 '
gpq = Z E gmne_Jh(mPlM.‘.nQ/N) (2.19)

m=0 n=0

and
1 M-1N-=1

Gmn = —— Z z apqu'?w(mP/MMq/N) (2.20)
M p=0 g¢g=0

For consistency, the transform of the differential operator (2.14) may be replaced
by first approximating the operator by its discrete counterpart. For example, using

a 3-point central difference scheme, we have

99, \ _[Ag] _ glzi+ 4E) — g(z; — 42)
ax(z') - [A:z: 3 Az (2.21)

whose Fourier transform is given by

k — 7k Az
ag f _ e’ 2 —¢ L7 2
3 g(kz) A (2.22)
or more compactly as
0 . ~
2 &L ip.(k.)alk.) (2.23)

where

D, = ,sinc(k,% ) (2.24)
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and sinc(z) = s_ulx(g:_l is known as the sampling function. It is seen that the transforms
of the continuous and discrete derivatives (equations (2.14) and (2.23)) become equal

as the spatial sampling interval becomes vanishingly small since

lim sinc(z) = 1

T—+

More accurate expressions may be derived by using higher order difference formulae.

For example, employing the 5-point central difference scheme, we have

F Az Az z
@(x;) ~ [ﬁ] _ 8g(zi+ &F) — g(z: + 29%) + g(zi — 29%) — 8g(z: — 5F) (2.25)
Oz Azls 12Az
and the corresponding transform pair is given by
09 F ., 2. Az 1. Az
7 _1ls:,[3smc(lc,C 3 ) — 4smc(3k, 5 )1g(kz)- (2.26)

2.4 Incorporation of Subsectional Expansion Functions

In the Method of Moments, it is well known that the use of appropriate expansion
(basis) functions to represent the unknown current distribution, plays an important
role in the accuracy and convergence of the solutions.

The employment of the subsectional basis functions to iterative methods involv-
ing the FFT was initially proposed in connection with the Spectral Iterative Tech-
nique (SIT) [23] and was shown to produce improvements in the rate of convergence.
However, no quantitative conclusions were drawn because of convergence difficul-
ties associated with the SIT. Here, a systematic study of the incorporation of basis
functions into the CGFFT method will be considered.

An assumption in the derivation of the DFT pair (2.17)-(2.18) is the validity of

the integral approximation

G(k.) = /_ : g(z)e*%dz m 3 gaeHeen Az (2.27)
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implying that the integrand is constant over each sampling interval in (2.27). In

other words,
9(3)3_5,"'2 = grn + jgin = const. Th ST < Toy (2.28)

where g,, = Re{g.} and gi\n» = Sm{g,}. A consequence of (2.28) is that g(z) is
not constant over the interval and is, in fact, a function of both spatial and spectral

variables. Thus, from a solution of (2.28)

g,(I) = Re {g(x)} = Grn COS(IC,.T) = Gin sin(k_.,x) (229)

G(z) = Sm{g(z)} = grmsin(ke) + gin cos(ks2) (2.30)

It has been observed [24] that the above dependence of the implied discrete rep-
resentation of a given continuous function can play a major role in degrading the
convergence rate of the CGFFT solution. It is, therefore, essential that some cor-
rective procedure be taken and an obvious approach is to employ a higher order
integration formula to replace (2.27). This was discussed in [24] but as can be ex-
pected, it results in a slower DFT algorithm. An alternative [23, 25] is to expand

g(z) in a sequence of subsectional expansion functions {f,} as

N-1 N-1
g(z) = E gn falz) = z%gnf(z - Za) (2.31)
n=0 n=

where the second equality implies the invariance of the basis functions with respect

to translation in the x-coordinate. Introducing the Dirac delta function

1, z=0
§z) = (2.32)

0, else

equation (2.31) may be rewritten as a convolution in the form

N-1
g(z) = f(z) * Z gnb(z — z,) (2.33)

n=0
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The Fourier transform of g(z) is thus given by
=739 (2:34)

where f is the Fourier transforms of the chosen basis function and § is the discrete
Fourier transform of g as given by (2.18). Equation (2.34) establishes the relationship
between the continuous and discrete Fourier transforms when subsectional expansion
functions are employed.

Customary forms of the basis function f(z) include the piecewise constant (PWC)

and the overlapping piecewise sinusoidal (PWS) expansion functions given by

1 |:t:|<é2-:E
P(z) = (2.35)
0 else
in[k,(Az — |z|)]
Q(z) = s1n5in(k::Az)x lol < Az (2.36)
0 else

respectively where k, denotes the free space wave number. For these choices, we have

the Fourier transforms

P(k) = Azsinc(k,%f) (2.37)

k,[cos(k;Az) — cos(k,Az)]

k) = = (kas) (k2 = k2) (2:38)
and we observe that for a sufficiently small sampling interval
lim P(k;) = Az (2.39)

Az—0

. o= k, sin(k,Az) — k. sin(k,Azx)
Aim Q) = = Ak — k)

= Az (2.40)
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where use has been made of 'Hépital’s rule and the approximations
sinz~z cosz ~ 1 NEIR !
Therefore, for vanishingly small sub-intervals, the relation
§(fe)~Az-g (2.41)

holds when the above expansion functions are employed. Apart from the multiplying
constant, (2.41) is the transform of g(z) when f(z) = §(x)-delta basis. Since the
same result can also be derived via direct application of the rectangular rule of inte-
gration (2.27) in the computation of the Fourier integral, (2.41) has been exclusively
associated with the conventional application of the FFT algorithm despite the fact
that it holds true for subsectional expansion functions as well. As will be shown
later, the convergence of the CGFFT method is improved considerably if the more
accurate expression (2.34) is used in the formulation instead of (2.41).

In the case of a two dimensional current representations, an appropriate expansion
is

N-1M-1

9z, 9) = f@,0) * X_ Y gamb(z — za)6(y — ym) (2.42)

n=0 m=0 .

where f(z,y) denotes the surface basis function and (2.34) still holds with the trans-
forms interpreted as two-dimensional ones.

Often, it is necessary that the basis function be chosen to have a different func-
tional dependence in the z and y directions. For example, when representing the

currents on a thin plate a more suitable basis function is of the form

f(z,y) = P(z)Q(y) or fz,y) = Q(z)P(y) (2.43)

having the corresponding Fourier transforms

-~

f = P(k;)Q(K,) and f=Q(k:)P(ky) (2.44)
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and P, Q, P, and § are given in (2.35)-(2.36) and (2.37)—(2.38). Again, as Az and

Ay both go to zero, equations (2.44) :educe to
g(kz, k) ~ ASg (2.45)

where AS = AzAy is the incremental surface element.
The above analysis enables one to incorporate the subsectional expansion func-
tions into the CGFFT formulation. Using (2.34), equation (2.15) can now be written

as
E=7-3+F{.3f} (2.46)

Obviously, the transform f of the basis function needs to be computed only once and
thus the computations per iteration implied by ( 2.15) and (2.46) are essentially the

same.

2.5 Numerical Considerations

Equations (2.15) and (2.46) are valid only on the body of the scatterer. That is
the domain of the Fourier transform is not infinite and for this reason, they cannot
be solved directly for J in the spectral domain. To solve for J, (2.15) and (2.46)
must be enforced on the scatterer in the spatial domain along with the sampling
requirements and linearity of the corresponding discrete convolution [22]. In a dis-
crete implementation of (2.46), the sampling intervals should be chosen so that the
Nyquist criterion is satisfied in the spatial domain. Also the length of the FFT (re-
ferred to as FFT pad) must be large enough to accommodate the spectral contents
of the convolved quantitiss. That is, the truncation of the spectrum should cause

minimal errors in the iteration process.



26

In general, the period M of the array to be transformed is chosen according to

the relation
N =2¥: N' > Nnyquist N >2N -1 (2.47)

where N is the number of unknown coeflicients in the discretization of the current
density and v is an integer. In practice, v is chosen to be the smallest integer

satisfying the relation
v 2 log,(2N —1) + ¢ (2.48)

where g is also an integer (usually unity) setting the order of the FFT pad. The array
elements beyond the physical extent of the scatterer are set to zero before (forward)
and after (inverse) transformation.

In scattering computations, a usual practice in the implementation of (2.46) is
to employ a sampling interval of at least 1/10 of a wavelength and an FFT length
at least twice (order p = 1) that of the linear dimension of the scatterer in or-
der to accommodate the spectral spreading due to the convolution. The sampling
requirement is more serious for antenna problems where one is interested in an accu-
rate evaluation of the surface fields for input impedance calculations. The FFT size
should be chosen to minimize aliasing errors caused by the truncation of the Fourier
transform of the Green’s function. However, as seen from ( 2.15) and ( 2.46), when
minimizing aliasing, the entire quantity in the curly brackets must be considered.
This involves the product of the transforms of the current with the Green’s function.
When the current density is not expected to be associated with spatial singularities,
its transform will be essentially bandlimited and an FFT length of order ¢ = 1 should
be adequate to represent the spectral content of the convolution without noticeable

aliasing error. However, when the current density is associated with spatial singu-
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larities as in the case of E-polarized excitation for a thin conducting strip, aliasing
is expected to cause substantial error unless corrective means are introduced. In
general, to eliminate aliasing errors when employing the discrete Fourier transform,
we must form periodic functions in the spatial and spectral domains [26] and this is

the basis of the corrective procedure discussed later in the thesis.
2.6 Summary

A general overview of the conjugate gradient algorithm for solving electromag-
netic scattering and radiation problems was presented. By introducing the Fourier
transform pair and employing the convolution theorem, the electric field integral
equation was placed in a form suitable for a solution via the conjugate gradient
method.

The incorporation of subsectional expansion functions into the CGFFT method
was also discussed. A simple relationship between the continuous and discrete Fourier
transforms of the unknown function was established in terms of the transform of
the employed expansion function. The relationship holds for both one- and two-
dimensional cases and may be considered as a generalization of a commonly used
expression in the conventional application of FFT. The practical advantages of using
the subsectional basis functions will be examined in the next two chapters.

Finally, since the Fourier transforms involved in the calculations are computed by

the fast Fourier transform, some numerical aspects of the method were also addressed.



CHAPTER III

RADIATION AND SCATTERING FROM
WIRES AND STRIPS

3.1 Introduction

In this chapter the CGFFT method will be applied to the analysis of wire dipoles
as well as flat and circular cylindrical strips.

The radiation by a center-fed cylindrical wire dipole has been extensively studied
with analytical approaches [27, 28] as well as traditional numerical techniques such as
the method of moments [29, 30]. It is, thus, instructive to consider an application of
the CGFFT solution method to this problem first. Two classic integral equations for
the total current distribution over conducting wires are referred to as Pocklington’s
integrodifferential equation and Hallen’s integral equation. The latter is usually
restricted to the use of a delta-gap voltage source model at the feed of a wire antenna
while the former is more general and is adaptable to other excitations.

The scattering behavior of thin strips has also been studied in some detail in the
last three decades. These include the scattering from conductive [31] and resistive
strips [32, 33] as well as the analysis and synthesis of tapered strips [34, 35]. These
studies have focused on flat strips. On the other hand, a numerical solution method

for thin dielectric slabs of uniform thickness and arbitrary shape was given as early

28
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as 1965 [36, 37] by discretizing the slab and forming a linear system of equations to
be solved via the Method of Moments.

In the present study, the CGFFT will be applied for computing the scattering by
the flat and circular strip problem. It is shown that for circular strips the convolu-

tional form of the integral is preserved in terms of the angular parameter ¢.
3.2 Radiation of a Thin Wire Dipole

Consider a z-directed cylindrical dipole of length £ and radius a < £ radiating
in free space. The electric field due to the excited current distribution K, over the
antenna is given by the scattering integral (1.20). If the wire is thin, the current at

the end faces is negligible and the radiated field in the cylindrical coordinates is then

given by

. . 1 32 é 2 ' 2 e—jkoR I
Ep,2) = —jkoZo (HE@) /_1/0 K.(¢, 2 ——add'dz (3.1)

where R is the distance between the observation point (p, ¢,z) and the source point

(a,¢',2)

R= \/;)'*’+a2—2paoos(q$—q3’)+(z—z')2 (3.2)

and Z, and k, are the intrinsic impedance and wave number of the free space, re-
spectively. For a ¢ — symmetric method of feeding [38], the surface current density
K, is azimuthally uniform and the total current is given by I, = 27raK,. Moreover,
since the radiated field is independent of ¢, we may set ¢ = 0 for convenience. By

enforcing the boundary condition

Ei(a,z) + E2(a,z) =0, (3.3,
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stating that the tangential field vanishes on the wire surface, we obtain the Pock-

lington’s integral equation [39)
; : 18\ 3, Ny
E(z) = jk,Z, (1 + k_oa—zz-) /-é L(2")Gy(z — 2')dz (3.4)

In the above, G,(z,2') is the Green’s function (also referred to as the ezact kernel)

given by
, 1 rir e—ikeR
Gu(z—2)= é—r-./; R d¢ (3.5)
where
R= \/(z — 2')? + 4a? sin2%S (3.6)

The above integral equation may be simplified further for an electrically thin
dipole(k,a < 1). In this case, a total filamentary line-source may be assumed to
flow along the center of the antenna along the z-axis. The angular integration over

# is avoided and G,, is replaced by the reduced kernel

e_jko"

Gu(z - 2) = (3.7)

where r is the distance from a field point (a,¢,z) on the cylindrical surface to a

source point (0,0, 2’) on the z-axis

r=\/(z - 2)? +a? (3.8)

Comparing (3.4) with (1.1) we may identify the right hand side of (3.4) as A[/]

whose adjoint is given by

a e 1 62 é ’ ! '
Al = =ik (14 £ 57 /-g 1(2)G% (2 — 2')dz (3.9)

A form of (3.4) compatible with ( 2.15) is

Eifa) = L2 77 {(k ~ k)Gu (k) F(ko)T) (3.10)
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where

[ 1
2—7rIo(a\/kf — k2) K,(a\/k? — k2) exact kernel

Gu(k:) = (3.11)
1
o K,(ay / k2 — k2?) reduced kernel

is the Fourier transform of the Green’s function in which I, and K, are the zeroth

\

order modified Bessel functions of the first and second kind, respectively. Upon the
specification of the excitation field E', expression (3.10) is now suitable for a solution

via the CGFFT method.

3.2.1 Dipole Excitation Models

Two excitation models commonly used in the analysis of the wire antennas,

namely the voltage gap model and the magnetic frill model are considered here.

Voltage Gap Model

In this model we assume that the antenna is excited by a finite constant voltage V;
across its feed terminal gap giving rise to an impressed electric field which is entirely

confined to the gap. Thus, the impressed field is expressed by

E =:Vi/A |7|< %

where A is the gap width.

Magnetic Frill Model

The delta gap model (3.12) does not account for the fringing fields present outside
the gap region and, therefore, may not be accurate for near field and impedance

calculations. Clearly, this situation becomes worse as the gap becomes wider. To
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Figure 3.1: The magnetic frill model for antenna excitation.

include the effects of finite gap widths, the magnetic frill model was introduced [40].
This model is of practical importance specially in modeling of coaxial lines feeding
monopoles on a ground plane (Figure 3.1). The feed terminal is replaced by an
equivalent azimuthally directed magnetic current density that exists over an annular
ring. The inner radius of the ring is chosen to be the same as the radius of the wire a,
while the outer radius b is that of the coaxial cable feeding the monopole and whose

characteristic impedance is

_ o, In(b/a)
Z = Zy—st=t (3.13)

Assuming that the coaxial structure supports a purely TEM mode, its aperture field

may be approximated by

E Vi

= rh (3.14)

and upon closing the aperture with a perfect conductor and invoking the equivalence

principle in conjunction with image theory, we find that this field excitation can be
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replaced by the equivalent magnetic current

M = 2E'x#
- 1
~ Tn(b/a)

(3.15)

The electric field generated by this source on the axis of the antenna is readily found

to be [40]

.- ,—jkRy  ,—jkR;
EZ(O,Z) = 21n(b/a)( R, - R, ) (316)

where

Ry = V2?4 a? Ry=vz2 4+ b2

3.2.2 Input Impedance

Once the current distribution on the cylindrical body is known, the input impedance

can be computed from
Zin = L /1 E(a,2")I*(2")dZ (3.17)
T ()] E T '
where E? is the tangential surface field on the antenna given by
E!(a,?) = —E: (3.18)

Thus, the input impedance is given by

1 ! 1 A LTV} !
Zin = 00T /_ Ei(a,#)I"(<)dz (3.19)

and for a voltage gap model, the above equation reduces to the well known Ohm’s

law
Ve

Zin = Tl (3.20)
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Figures 3.2 - 3.4 show results based on the above formulation along with compar-
isons with data obtained by the method of moments (MoM). In particular, Figure 3.2
and 3.3 show the convergence of the solutions as a function of sampling density using
a magnetic frill model for the excitation fields and it is seen that the CGFFT and
MoM solutions exhibit the same convergence characteristics. Also Figure 3.4 depicts
the convergence of the input impedance (3.19) as a function of sample density and
it is again observed that the CGFFT and MoM [41] solutions converge to the same
result.

The effect of incorporating various expansion functions is considered next. The
current distribution on a 9 dipole based on a voltage gap excitation model is given
in Figure 3.5 as predicted via a CGFFT or an MoM solution. Although all expansion
functions considered give similar results, the employment of the piecewise sinusoidal
basis functions (PWS) drastically improves the convergence of the CGFFT as seen
from Figure 3.6. Typically, an estimated 100% improvement in the convergence rate
of the CGFFT method was observed when employing the PWS expansion functions.

F inaﬂy, Figure 3.7 shows the improvement in CPU time that can be attained on
employing a CGFFT solution method versus a standard MoM solution. Clearly, the
CPU time required for a CGFFT solution is a linear function of the system unknowns,
whereas in the case of a MoM solution the dependence is quadratic. Also, shown in
Figure 3.7 is the improved convergence attributed to the use of higher order basis

functions.
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Effect of Sample Density on the CGFFT Solution

15.0 '
] I ) |
[ a/\ = 0.005
12.0 |- -
// —\\\\ ///--- \
9.0 - / \ / \\\ —
/ \ / \

[1(z)|, mA

Figure 3.2: Numerical convergence of the linear current distribution for a 1) dipole
with increasing sampling density evaluated by the CGFFT. Top to bot-
tom: No. of samples = 15, 31, 63, 127; FFT pad order p= 2, 2, 2, I;
Magnetic frill excitation model.
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Effect of Sample Density on the MoM Solution
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Figure 3.3: Numerical convergence of the linear current distribution for a 1) dipole

with increasing sampling density evaluated by the MoM. Top to bottom:
No. of samples = 15, 31, 63, 127; Magnetic frill excitation model.
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Dipole Input Impedance; Frill Mode!
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Figure 3.4: Real and imaginary parts of the input impedance for a 1) dipole (« /A=
0.005) as a function of sampling density.
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Radiation of a Thin Wire Dipole
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Figure 3.5: Current magnitude for a 9A dipole (a = 0.005)) computed by the MoM
and the CGFFT using different basis functions and a voltage gap model
for the source (13 unknown/J).
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Radiation of a Thin Wire Dipole
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Figure 3.6: CGFFT convereence patterns for the 9A dipole (13 unknowns [A).
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Performance Evaluation of the CGFFT and MOM

S00
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Figure 3.7: A comparison of the CPU times required by the MoM and the CGFFT for
the solution of the resonant dipole problem (CGFFT tolerance: 0.003).
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3.3 Scattering from Flat Resistive Strips

A thin conducting sheet or non-magnetic dielectric layer can be represented by
a resistive sheet. In the case of a source-free dielectric layer having thickness 7, we

have from ( 1.17)
VxH = jweE (3.21)
It is customary to characterize the layer by an equivalent electric current density as

VxH = jw(e —€)E + jweE

= J¢ + jwe,E (3.22)
where the equivalent current
Jey = jweo(e, — 1)E (3.23)

is now assumed to radiate in free space. In the above, ¢, is the relative complex
permittivity of the layer €¢./¢o. When the layer is electrically thin (k7 < 1), the
normal component of the electric field inside the layer is negiigible. The dielectric

layer can therefore be replaced by a resistive sheet of surface current density
K= li_r.%r Jeqltan (3.24)
where
[Jev]ta.n =Jeq— (R~ Jeq) n (3.25)

is the transverse volumetric current flowing across the layer. (7 is the upward unit

normal to the layer). In view of (3.23) we may write

E-(-E)a=2ZK (3.26)
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where Z, is the resistivity (in Q per unit squared) of the sheet

Z,

Dy = ———————
jko(e- — 1)

(3.27)

Therefore, a resistive sheet is an electric current sheet whose strength is proportional
to the local tangential electric field. For a thin conducting sheet of conductivity o,

(3.27) reduces to
Zy = — (3.28)

Mathematically, the resistive sheet satisfies the boundary conditions [42]

—%a x7x(E*+E) = ZK

(3.29)

Aix(Et-E°) = 0

where E* denotes the total field above and below the sheet. Using (3.29), integral
equations may be derived for computing the current induced on the strips for a given
excitation and in the following we consider their derivation and solution for each of

the principal polarizations separately.
3.3.1 Integral Equations
E-Polarization

Consider the E-Polarized wave

Ei = Eejko(zwwo-wsinéo) (3_30)

H' = —(Zsind, — §sin @,)Y,eke(Fcondotysingo) (3.31)

incident on the resistive strip of resistivity Z, and width w coincident with the x-axis

as shown in Figure 3.8. This excitation generates on the strip a z-directed current
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-wi/2 w/2

Figure 3.8: Geometry of a strip illuminated by a plane wave.

K., giving rise to the scattered field

/2
E; = —jkoZo " Kz(z’)G.(kol.’B —_ x’l)d;cl

-—w
where G, is the two dimensional Green’s function given by

Gz —2') = %},H‘Sz)(kolz - z'|)

(3.33)

and H® is the zeroth order Hankel function of the second kind. Imposing the con-

dition (3.26) on the total tangential electric field over the strip, an integral equation

for K, is obtained as
k. ) ko w/2 n rr(2) ! !
y,eitezconse ,,,K,(z)+2-/ K@D (Kol ~ =) dz
-w/f2

where 5, = Z,/Z, is the normalized surface impedance of the strip.

H-Polarization

Consider now the H-polarized plane wave

H' = 3¢lko(zcosdotysingo)

E" = Zo(f sin ¢, — = cos ¢°) ejko(rcocéo+ytin¢,,)

(3.34)

(3.35)

(3.36)
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incident on the resistive strip. This excitation generates an x-directed current density

responsible for the scattered field given by

. 1 0 /2 1 ’
B =—jk2, (1+—;) [ K(e)Gulkale - o')de (3.37)

w/2

Again, by imposing the resistive boundary condition, the integral equation satisfied

by the current density K is obtained as

singoctoremte = Kole) + 2 (14 i) [T Kule) B ke - e
° e 4 k2022 | J-up2 o e

(3.38)

The far zone scattered fields at the cylindrical point (p, ¢) can be computed from

the scattering integral using the large argument approximation of the Hankel function

%5 _.
HO (k,p) ~ rk]pe-ﬂ‘op’ k,p — 00 (3.39)

Upon using the approximations
lp—p|~p—2'cosd=p (3.40)

for the phase and amplitude considerations, respectively, we have

e_jk“’ X k Z 2 /2 Lt
Ea = - oo /w i ’ kox! cos ¢ ’ )
, 7 2z " ‘/rko -w/zK (z")e dz (3.41)

and

~ikp __'[ko o /2 i ,
7 i keZe [ 2 ng [ K. (2)eikor ey (3.42)

\/E 4 Wko -w/2

for E and H polarizations. The two-dimensional scattering echo width is defined as

E) =

(3.43)
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and therefore

2

/2 o
. = % Z, o K. (z')e% <= ¢dz’ (3.44)
ko . w/2 N skox' cosd .1 2
o = 7 sm¢j_wl? K. (z')e* dz (3.45)

Typically, a solution of (3.34) and (3.38) can be accomplished numerically. How-
ever, approximate analytical solutions exist for the perfectly conducting case if the
strip is electrically very narrow or very wide. These solutions are based on the
quasi-static and physical optics approximations of the pertinent integral equations,
respectively. They may be used to find closed form expressions for the echo width
of the strip.

For a perfectly conducting strip Z, = 0 and the integral equations for the surface

current densities are given by

. /2 ,
gikorcosdo — -’ff% 2 K, (z)H®(k,|z — z'|)dz’ (3.46)
and
: k 1 92 w/2
: oeJkozco-¢o — =0 A / " r(2) - 7 ' .
sin ¢ " (1 + % 6:1:2) o K. (2" )H}? (k,|z — z'|)dz (3.47)

3.3.2 Very Narrow Strips

A general analysis of narrow strips and slots can be carried out analytically by
employing certain quasi-static approximations to the integral equations developed in
the previous section [43]. Since a similar analysis will be carried out in the study of
narrow filled grooves in C-apter 6, we will present it here for completeness.

When k,w < 1 in the integral equations (3.46) and (3.47), we may introduce the
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small argument expansion for the Hankel function [44],
HO(z)~1-j2mm (72-") +O(2, 2 1n 2) (3.48)
T

where Iny = 1.78108... . is Euler’s constant. Retaining only terms to O(k,w) in the

Hankel function as well as the incident fields, we have

w/2 ' Ny _ 2W] Koy | .m| [u? "yt
/_w/z K.(a')Inje —2'lda’ = 7 [m( : )+J2] /_w/2K,(z )dz'  (3.49)

for E-polarization and

9 run2
/w K. (z')In|z — 2'|dz’ = 275k, sin ¢, (3.50)

ﬁ -w/f2

for H-polarization. Further, by introducing the change of variables

£=2—z , £'=2—$ (3.51)
w w

equations (3.49) and (3.50) respectively become

' k, : o
/ ‘1 K.(&)In |¢ - £'lde’ = kf,f;o - [‘“ (‘uﬁ) + %} [ ‘1 K.(&)de'  (3.52)

4
& 1K YIn '|d¢' = jrk,wsi 3.53
g8 | K€ e - €1de’ = jmh,wsin g, (3.3)

To solve (3.52) and (3.53) we recall the following identities from the finite Hilbert
transform theory [43, 45):

1 ln|z - 2’|

- —1\/T_7dz = —-7ln2 T € [—1, 1] (354)
and
a n
m/l\/I—m”lnlz-xﬂdz':w z € [-1,1] (3.55)

and since the right hand sides of (3.52) of (3.53) are independent of ¢ we deduce that

K(6) = =g = ——= (3.56)

T ()

w/2
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K:(§) = xayl=-8&= Xh\\l - /2 (3.57)

where x. and x, are tonstants to be determined. By substituting (3.56)-(3.57) into

and

(3.52)-(3.53) we readily obtain

4;
k,wy .o
k,w [ln( 3 ) +J2]
and
Xk = Jkowsin ¢, (3.59)

As expected (3.56) and (3.57) display the familiar edge behaviors at the terminations
of the strip [46).

The scattering echo widths are computed from (3.44) and (3.45). However, in
this case, we may use the approximation (3.40) for both amplitude and phase due

to the small width of the strip. Thus,

ko /2
o. = —|Z, K.(z')dz (3.60)
4 -w/2
k w/2
op = Z" sxn¢/ (3.61)
and upon substituting for the currents, we obtain the simple expressions
Tw |? A
_Xe = 2 (3-62)
In kowy L3
o (557) +3
and
2 4
B nsing| = %\ (k"zw sin ¢) (3.63)

valid in the backscatter direction.
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3.3.3 Very Wide Strips

For electrically wide strips, the local electric current may be assumed to be that
corresponding to an infinitely wide strip. This is known as the physical optics ap-

proximation and is expressed as

K=2nxH (3.64)
or more explicitly,
K.(z) = 2Y,sin g, oro0¢e (3.65)
for E-polarization and
K.(z) = 2eikomconto (3.66)

for H-polarization.

The physical optics approximations may also be derived directly from the gov-
erning integral equating (3.46) and (3.47) when the strip is assumed to be infinite in
extent. Hence, we have

elkoT cos do = jk,Z, lim w/2 K (x’)G (z-x’)dxl (3 67)
0o z s\ ’

ow—00 J_yw/2
for E-polarization and

: ; /2 2
sin goe’kose™%e — L [im , K.(z') [(k: + 6—)] G,(z;z')dz’  (3.68)
2

ko kow—00 Jy 61'2
for H-polarization. The integrals on the right hand sides of (3.67) and (3.68) are

equivalent to

/_oo K,(2")G,(z;2")dz’ (3.69)

/_: K.(z') [(k: + gg)] G,(z;z')dz’ (3.70)
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and are identified as convolutions in the infinite domain. Thus, upon invoking the

convolution theorem and using the transform pair
gko con o é 218(k, — ko cos ¢,) (3.71)
we have, by taking the Fourier transforms of both sides of (3.67) and (3.68)

2r6(k, — kocos ¢o) = jkoZo Ky (k:)Go(k:) (3.72)

2nsin¢,,5(k,-kocos¢o)=ki L(k)(K2 — k3G, (k2) (3.73)

Formally, the above equations can be solved algebraically for the transforms of the
currents K, and K, to yield

74 (k.) = 278(k, — ko cos ¢,)
T k.26l (k)

(3.74)

and

27k, sin ¢o6( ks — ko cos ¢,)
(k2 — k2)G, (k)

K. (k) = (3.75)

Taking the inverse transforms of both sides now gives

_ 8(ky — ko cos ,) pike
K.(z) = sz/ XN dk,
jkoT cosdo
= — (3.76)
71k.Z,G,(k, cos ¢,)

k,sin ¢, /°° 8(kz — ko cos ¢°)ejk,zdk
j o J-oo (K2 — k2)G,(ks)
k, sin ¢, e’ *eT cos o

= j(k2 — k2)G,(k, cos ¢,) (3.77)

T

where use was made of the properties of the § function. The Fourier transform of

the Green’s function G, is given by (Appendix B)

Gulke) = —7m— (3.78)
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and when this is substituted in (3.76) and (3.77), we recover (3.65) and (3.66).
To find the physical optics echo widths, we substitute (3.76) and (3.77) into (3.44)

and (3.45). In the backscatter direction ¢, = ¢, we readily find
o = k,w? sin ¢sinc?(k,w cos ¢) (3.79)

for both polarizations.

3.3.4 CGFFT Solution

We will now consider the solution of (3.34) and (3.38) for arbitrary size strip
via the CGFFT method. To do this, we must rewrite these equations in a form

compatible with ( 2.46). The Fourier transform of G, is given by (3.78)

G.(k;) = 1
2j\/k2 — k2

and therefore (3.34) and (3.38) may be rewritten as
Yoeltosembe = 1, K, (z) + jko F 7 { G, (ko) Ko (k) Fks) } (3.80)
and
sin g,e™*e* % = K (z) + {- FH{® - )G (kK F (k)  (381)

respectively. These may now be solved via the CGFFT algorithm.

Echo width patterns based on a CG solution of (3.80) and (3.81) are compared
with MoM data in Figures 3.9 and 3.10, respectively. The strip is 4\ wide and has
a non-uniform resistivity as shown. In practice, tapered resistive cards are often
employed for radar cross section reduction and Figure 3.11 demonstrates an example
of such a reduction in connection with a strip having a resistivity that is tapered

parabolically as given in Figures 3.9 and 3.10. The choice of basis functions is again
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53

a factor in the convergence of the CG solution and similarly with the wire example,
the sinusoidal basis functions were found to provide a substantial improvement in
the convergence rate (almost 100 percent). This is shown in Figure 3.12 for the
H-polarization.

It should be noted that the expected behavior of the current density plays a
major role in the choice of the FFT pad used in the calculations. This is related to
the spectral content of the current as well as the singularity of the pertinent Green’s
function. The field distributions over open conducting bodies and their singular
behavior have been studied by several authors in order to establish such behavior in
explicit numerical terms (see for example [47]).

Consider the H-polarization case (TEz ) first. In this case, the current density is
not singular and-like the current density on the wire dipole studied in the previous
section-it vanishes at the edges, rendering its transform essentially band-limited.
Therefore, an FFT length of order 1 (o = 1) should be adequate to satisfy the
spectral spreading due to convolution without noticeable aliasing error.

On the other hand, for the E-polarization incidence (TMz ) the current density
is singular at the edges and aliasing is expected to occur in the transform domain.
This may cause substantial error unless high sampling rates are employed in the
spatial and spectral domains to avoid aliasing. For example, the CGFFT solution
for the perfectly conducting strip presented in Figure 3.9 for the E-polarization case
required an FFT pad of order p = 3. This is, of course, undesirable because it will
increase the memory demanc and execution time per iteration.

As mentioned in the previous section, employing the analytical transform of the
Green’s function is valid if the inte -al equation is defined on the entire real axis

(infinite domain). This was the case for the wide strip in the limit as the width
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Scattering from a Conducting Strip

Delta PWC PWS

Normalized Residual Error, s

30

Iteration Number

Figure 3.12: Convergence patterns for the 4 strip illuminated by an H-polarized
plane wave using 20 unknowns/A.
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was taken to infinity. For finite strips, however, this approach gives an approximate
solution which improves by extending the size of the FFT pad to include higher
spectral components. For a given strip, the degree of improvement achieved depends
on the sampling density and the polarization of incident field.

To overcome this difficulty, an alternative is to discretize the integral in (3.34)
before proceeding with its computation via the discrete Fourier transform. That is,

assurmning a pulse basis expansion for the current density,

K.(z)= 2-0 K.(zn)P(z — z,), T, =nA + —3— (3.82)

we substitute (3.82) into the integral equation (3.34) and enforce it at discrete
points(point-matching) z,, = mA + A, m = 0,...,N — 1. This yields a linear

system of equations for the solution of the current density. In particular, we have

w/2
[, e HD (lem = 2’ = [ [EK (2a)| H? (Kol — 2']) o’
-w/2 w

w, n=0
(3.83)
and by interchanging the order of summation and integration,
N-1 :"+A21 N-1
3 K.(z.) HO (ko|zm — 2'|)dz’ = Y K, (z,,)r(z,,. —z,)  (3.84)
n=0 a3 n=0

In the above, T(z,, — xn) = Tmn are the mutual admittance elements given by

r%Al ( °7A)—1)], n=m

Tmn >~ ¢ (3.85)

5 AHO 2 = 2], n#m

\

in which In v is the Euler’s constant. Since T is not singular anywhere, the evaluation
of the convolution integral may now be carried out without aliasing errors via the

discrete Fourier transform as

w/2 —
/ /2 K,(z')H{ (ko|zm — '|)dz’ = DFT - {K,T} (3.86)
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where DFT —! denotes the inverse discrete Fourier transform and T is the discrete
transform of the sample train Yon,n = —(N —1),---, N — 1.

Expression (3.86) renders the evaluation of the convolution relatively insensitive
to the length of the FFT provided the convolution requirement is satisfied. As
illustrated in Figure 3.13 for the case of normal incidence on a perfectly conducting
strip one wavelength wide, the predicted current distribution agrees with the MoM
result when (3.86) is employed in the CGFFT algorithm with an FFT size just twice
the length of the strip (FFT pad of order o = 1). In contrast, when employing
the sampled continuous analytical transform for the evaluation of the convolution
integral, the resulting current distribution remains in disagreement with the MoM
solution unless at least an FFT pad of order ¢ = 3 (four times the size of the strip)
is used. The corresponding comparison of the bistatic scattering patterns is shown
in Figure 3.14 and the same observations again apply.

Hereon, the solution of (3.86) via the conjugate gradient method will be referred
to as the CGDFT method and the corresponding method of solution based on (3.80)

or (3.81) will be referred to as the CGFT method.
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Figure 3.13: Comparison of the current distribution on a 1\ wide perfectly conduct-
ing strip illuminated by a plane wave (E-pol, ¢, = 0) as computed by
various methods.
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Figure 3.14: Comparison of the bistatic echo width of a 1A wide perfectly conducting
strip illuminated by a plane wave (E-pol, ¢, = 0) as computed by
various methods.
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Y4

Figure 3.15: Geometry of an infinitely long curved strip illuminated by a plane wave.

3.4 Scattering from Cylindrical Strips

Consider a thin cylindrical shell of resistivity 5 illuminated by a plane wave E! of
wave number k, and polarization angle 3 (Figure 3.15). The incident field is given
by

E!(p) = (Psin p + 2 cos 1) Z,e I Kol ki + £) (3.87)
where ¥ = 0 corresponds to E-polarization (TMz) while ¢ = —7/2 corresponds to
H-polarization (TEz).

The scattered electric field due to the excited surface current K on the shell is

expressed by the line integral
E*(p) = =ik Z, [ K(¢') - T(p; p))dl (3.88)
where T’ denotes the electric dyadic Green’s function in unbounded space given by

L(p;p') = (T + %VV) G,s(p; P) (3.89)
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In the above, G, is the two-dimensional free space Green’s function given by
’ 1 (2) ’
G,(p; p') = ZJ'-HO (kolp = P'|) (3.90)

The explicit form of I' in cylindrical coordinates is

( 19 11 & )
+%os) %508 °
- 11 & 1 8 ,
T = —_— — — G, 3 3.91
55007 (1+(kop)26¢2) 0 (p; p') (3.91)
\ 0 0 1)

The total tangential electric field on the strip satisfies the resistive boundary

condition (3.26)

ET-(7-ET) = [E+E Z,K

]tan =

which upon substitution of (3.88) yields the desired integral equation
i x & x E(p) = Z(p)K(p) + jk.Z, [K(0) - B(pip)dl  (3.92)

to be solved for the unknown current distribution. In view of (3.90) this represents
a convolutional integral equation in K.

Let us now consider a solution of (3.92) for the special case of a circular strip of
radius a. Referring to Figure 3.16 and defining the phase reference at the origin, we

may write

dl ad¢

p=#| = a(cos—cos )7 + (sing — sin gy

/

¢ ) (3.93)

= 2asin(|
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Figure 3.16: Geometry of a circularly curved strip.

and

-~

ki-p = po— acos(¢ — o) (3.94)

Also, since there is no variation in p and the strip is infinitesimally thin, (3.91)

reduces to
fon 1 1 )2 oo wo 16— ¢
r(¢,¢)—4j{[1+(koa),a¢,}¢ +22 | H® | 2k,asin(2 )] @9s)

The integral in (3.92) can thus be expressed as a convolution in ¢ yielding
(¢sin + 2 cos ¢)e_jk° cos(¢ — 4o) — n:()K(¢)+ jk, /K(¢’) -T'(¢; ¢')ad¢’ (3.96)

where 7, is the normalized surface resistance of the strip and use has been made of
(3.94). For TEz incidence this becomes

k.a
4

[1+ g | [ KD [ 2keasin(2221)] g

Ey () = n.(6)Ke(d) + + Fa)? 58

(3.97)

while for TMz incidence we have

k, , =4 .
2 [K)8? [2hain®2Eh ] 0y, (308)

Ei(¢) = n($)K.(8) +
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Clearly, both (3.97) and (3.98) are amenable to a CGFFT solution.
It is noted that if the radius of the strip is large compared to its width, we may

modify the approximations (3.93) and (3.94) as

limlp-p) = alé—¢lx|z—2]

}Lr&acos(zﬁ — ¢o) =~ asingo+ a(r/2 — ¢)cosgo

= asin@g+ T cos Py (3.99)

and the formulation reduces to that of scattering from a flat strip (see (3.38) and

(3.34))
(—Zsiny sin ¢ + Z cos ,/,)ejk.,(a sin ¢o + T cos ¢o) —
n.(2)K(z) + ik, /_ w’:zx(z')  P(z; 2')dz’ (3.100)

where K(z) = ZK.(z) + ZK,(z) and T is now given by

f‘.'_l 1 8. **H(2)k '
(:r,a:)—Z; (1+-’;§3—z—2)zz+zz o (kolz — z'}) (3.101)

To solve (3.96) the current density is expanded in terms of a subsectional surface

basis function ¥ as

N-1
K(¢) = Z_:OK,. - ¥n(9) (3.102)
where
Wa(4) = (¢ — én) (3.103)

and upon using the piecewise constant basis function,
T(g) = (68 + 22)P(9) (3.104)

with

P(¢) = Lo ese< i (3.105)

0 else
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Substituting for the current expansion in the integral on the right hand side of (3.96)

and interchanging the order of summation and integration, gives
a Y Ka- [ @a(¢) - T(654)dd (3.106)

Introducing (3.106) into (3.96) and applying Galerkin’s method (Appendix A) yields

the system of equations

Vi = A¢nmKm + kza Y K, (3.107)
where
- dm+ABf2 .
(G - el kocos(¢ — ¢,) .
V. = ($sin ¥ + 5 cos ) /M_Am dé (3.108)
The dyadic function
E =544 + €752 (3.109)

is a discrete kernel whose elements are given by

f:‘f‘ — /¢m+A/2 /%+A/2 [1 + _1__?3__] H‘S?) [2koasin(|¢_2;¢’l)] d¢ld¢

dm—A[2 Jen-A/2 (koa)? 0¢?
' (3.110)
xz (2) ko 12— 2\l 4e'd .
mn /%-Alz ./¢,.-A/2 H, [2 a sin( 9 )| d¢'d¢ (3.111)

It is noted that both £%* and £** have integrable singularities corresponding to the

self-cell interaction which can be approximated analytically. In particular,

e kfa)2) [\/FkoaA:»H{” (f-‘%) - 2j] (3.112)

and a similar expression may be obtained for £2¢. The remaining terms (n # m)
may be evaluated numerically.

Applying the discrete convolution theorem in (3.107) now gives

koa
4

—

Vi = ApnemKon + = DFT “HE . K} (3.113)
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which is in a form suitable for solution via the conjugate gradient method.

Once the surface current density is evaluated, the scattered field can be computed
using (3.88) as
E*(4) = —j Zokea [ K(¢) - T(I6 — )do
Specializing this to the far-field, we find the scattering echo widths for the two

principal polarizations to be

o.(¢) = % a/K,(¢')ejkoacos(¢ — d0)ay’ r (3.114)
for TMz polarization and
on(¢) = % asin éo / K 4(8")ed koa cos(® — do) gy r (3.115)

for TE; polarization.

Sample calculations are now presented for circularly curved strips using the above
formulation. Figure 3.18 shows the bistatic scattering patterns for a 2 flat strip as
it is uniformly bent to form a closed circular cylinder keeping its width (perimeter)
constant. The strip is positioned symmetrically around the y axis and illuminated by
a TM_ plane wave incident at 90 degrees. It is noted that as the curvature « increases
from zero (flat strip), the main (specular) lobe drops and eventually disappears in
the limit when the complete cylinder is achieved. The numerical result for the closed
cylinder is in agreement with the classical eigen-function solution [17]

© 9 Ju(k.a)

>

2
cos(n¢ 3.116
2T b0 HO (ka) (nd) (3.116)

o(¢) = ;2;

where J, is the Bessel function of order n and &, is the Kronecker delta function

1 p=gq
b6pg = (3.117)

0 p#gq

This is illustrated in Figure 3.19 for the same strip.
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Figure3.17: A 2\ wide conducting strip as it is uniformly bent to form a hollow
cylindrical tube. & is the curvature of the strip and 6 is the polar angle
subtended by the strip.

3.5 Radiation by Cylindrical Reflector Antennas

Consider tﬁe circular cylindrical reflector shown in Figure 3.20 illuminated by the

line source

k.,Z,
E, = -I,ngg”(k,,p) (3.118)

The total electric field ET is evaluated in the far zone(k,p >> 1) as

] ; , ko
ET = _k—'f-‘i :—Z [I, + a/cK,(¢’)eJkoa cos($ — ¢ )d¢'] i

(3.119)
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Bistatic Echowidth of a Circular Conducting Shell
w=2), Normal Incidence ¢,=90°
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Figure 3.18: The bistatic echo width of the strip in Figure 3.17 illuminated at normal
incidence.

with the normalized radiation pattern of the reflector antenna given by
. ’ 2
Fu(9) =| 1+ f- f K (¢')eIFoa cos(¢ = ¢') gy (3.120)

Figure 3.21 shows the radiation pattern of an infinite electric line source in the
presence of a 27\ cylindrical resistive strip (a = 4A/3). The line source is positioned
at the center of the strip and radiates through a right angle slit. As expected, the

nonzero resistivity reduces the directivity of the reflector.
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Bistatic Echowidth of a Circular Conducting Cylinder
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Figure 3.19: A comparison of the computed bistatic echo width of a circular con-
ducting cylinder with the 20-term eigen-function solution.
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Figure 3.20: Geometry of a cylindrical reflector antenna with a 90 degree circular
slit excited by an infinite electric line source.

3.6 Summary

Scattering and radiation from thin wires and strips were formulated using a stan-
dard integral equation approach. The convolutional integral equation was uniformly
discretized allowing the implementation of the fast Fourier transform for carrying out
the caléulations. For the antenna problem, a larger sampling density was required
to yield an accurate evaluation of the input impedance.

Two formulations for a conjugate gradient solution of the scattering by resistive
strips were presented. The first formulation, namely, the CGFT method employed
the sampled continuous transform of the Green’s function for the evaluation of the
convolution integrals. The other formulation, called CGDFT, employed finite dura-
tion discrete Fourier transforms for the evaluation of the same integrals. This was
found to provide a more accurate as well as a more efficient simulation since it elim-
inated all aliasing errors. Notably, the system solved by the CGDFT method is the

same as that generated by the standard moment method procedure.
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Radiation Pattern of a 90° Cylindreical Slit Excited by a Line Source
a=4A/3, x=0.75/A, w=8.2832\
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Figure 3.21: The normalized radiation pattern of the reflector antenna.
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It should be noted that (3.38) and (3.81) are also applicable for computing the
scattering by an impedance insert of width w. This simply requires the replacement
of Z, by the impedance of the insert and changing the polarization of incident field.
The resulting echo width is then twice that given for the resistive strip to account
for the presence of the ground plane. It should also be noted that the formulation
discussed in connection with the thin strips is equally applicable to circular slabs

of finite thickness by introducing equivalent volumetric currents instead of surface

electric currents.



CHAPTER IV

RADIATION AND SCATTERING FROM
PLATES AND CYLINDERS

4.1 Introduction

Planar and cylindrical structures constitute simple but nevertheless important
components in man-made structures. Simulation of electromagnetic scattering from
these targets is of academic interest as well as practic.a.l value in computational elec-
tromagnetics. Understanding the electromagnetic scattering behavior of these struc-
tures is also important in modeling more complex targets as well as in radar detection
and cross section reduction. Although plates and cylinders have been the subject
of intense study in a wide range of frequencies, their numerical analysis have been
limited to the low frequency region, primarily due to computational limitations of
the traditional direct methods. In particular, experience with various numerical and
asymptotic methods of solution as well as comparison with measured data reveals
that there is a serious difficulty in accurately predicting the scattering behavior of
plates at grazing incidences where the edge currents and corner diffraction effects are
significant.

In this chapter, we first develop the necessary integral equations which are then

transformed to a suitable form for a solution via the CGFFT method. Two ap-

72
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proaches will be employed in the application of the method. The first implementa-
tion, previously referred to as the CGFT method in connection with the strip anal-
ysis, employs the sampled continuous Fourier transform of the free space Green's
function for the evaluation of the pertinent convolution integrals. This approach
assumes an infinite spatial domain in the definition of the Green’s function. Thus, as
far as the Green’s function is concerned, the finiteness of the target’s physical extent
is not accounted for and unless a large FFT ‘pad’ with extended zero elements is
used, the method suffers from aliasing errors. A pad at least 3 times the size of
the target in each dimension is often needed to obtain acceptable results at oblique
and close to grazing incidences [48]. To alleviate this difficulty, another approach,
previously referred to as the CGDFT method in connection with the strip problem,
will be employed where the pertinent integral equation is first cast into a discrete
form before the application of the convolution theorem to evaluate the integrals. As
observed in the case of the strip, this eliminates all aliasing errors, except perhaps
those attributed to a possible under-sampling of the current density.

Below, we discuss both of the above formulations for the solution of integral
equations arising in the computation of the scattering by resistive plates and dielectric
cylinders of arbitrary shapes and cross sections. The accuracy and efficiency of
these formulations are then examined by a comparison with measured data and data

generated by alternative techniques.

4.2 Scattering from Thin Plates

Consider a thin inhomogeneous plate of resistivity Z, illuminated by an incident
field E; and we are ini: -ted in evaluating the scattered field from the plate.

The scattered field due to the -xcited surface current density, K on the plate is
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given by the surface integral
E*(r) = —jk,Z, / K(r') - T(r;r)ds’ (4.1)

where I denotes the electric dyadic Green’s function in unbounded space given by

L(r;r') = (i + -]:—2VV) Gyp(r;r') (4.2)
with
e_jkolr - l"l

Gy(r;r') = T (4.3)

The explicit form of I’ is now given by

1 9? 1 9
(1+ Eé—;;) E@xay

T= Gp(r;r") (4.4)

1 92 1 82
—— (14 )
k2 0yoz k2 0y?
The total tangential electric field on the plate satisfies the resistive boundary

condition (3.26) and the desired integral equation for the unknown current density
is

[Ei(r)],,, = Zo(O)K(x) + ko2, L K(r') - T(r;r')ds’ (4.5)
in which r and r’ denote the field and source points on the surface of the plate.

Expanding the current density in terms of a subsectional surface basis function ¥,

we write
M-1N-1
K(z,y) = 2 E Ko - ‘I’mn(z’ y) (4.6)
m=0 n=0
where
‘i’mn(:t, y) = ‘i’(z —Tm,Y — yn) (47)
and
¥(z,y) = £2¢.(z, y) + §5%,(2,y) (4.8)

in which % and ¥, are the expansion functions in the z and y directions, respectively.
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4.2.1 Formulation Using Continuous Transforms

Through application of the convolution theorem, the continuous transform of

J(z,y) as given in (4.6) can be written as

-~

i=3.

e

(4.9)

where J = 2J.(z,y) + §J,(z,y) denotes the two dimensional discrete Fourier trans-
form of the train J,., defined in ( 2.19). Also, J(k., k,) = EJo(kz, k) + 57, (kz, k) is
the continuous Fourier transform of J defined in ( 2.11) and ¥ denotes the continuous
transform of the basis function.

By invoking the relation ( 2.14), the continuous transform of the free space dyadic

Green’s function can also be written as

K kk,
kR
I= Go(ks, ky) (4.10)
- kzky 1-— E:.
k? k?

where G,, is the transform of the Green’s function given by (Appendix B)

1
2j\/k3 — k2 — k2

ép(km ky) = (4.11)

Equations (4.10) and (4.11) constitute analytical expressions for the Fourier trans-
form of the free space dyadic Green’s function. Substituting these into (4.5) and

testing the resulting equation at discrete points (point-matching), yields the system
E;j = Z,;3; + jk.2,.F {(T - ¥) - 3} (4.12)

where the subscript ij denotes the value of the quantity at the test point (z;,y;) on
the plate. It should be noted, though,that in performing the Fourier transformation

implied by (4.12), an FFT pad at least twice the size of the plate in each dimension
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must be employed. In general, however, a much larger pad is required when the
analytical transform of the Green’s function is used. Also care must be applied when
implementing (4.12) to avoid sampling at the singularity of the transform of the

Green’s function as given in (4.11).

4.2.2 Formulation Using Discrete Transforms

In this formulation, the integral equation (4.5) is first discretized leading to ex-
pressions that can be identified as finite domain discrete convolutions. These can
then be evaluated via application of the discrete convolution theorem which is in-
herently cyclic, thus, avoiding aliasing errors. To cast the integral equation (4.5) in
discrete form we first employ (4.6) to rewrite the right hand side integral as

M-1N-1
/ [Z S Jmn- 'm(z,y)] -D(z,y;2',y")ds’ (4.13)
m=0 n=0
which, upon interchanging the order of summation and integration, may be written
as

M-1N-1

2 2 Jmn /‘I’mn(x,y) L(z,y;2',y')ds’ (4.14)

m=0 n=0

Introducing (4.14) into (4.5) and satisfying the resulting equation at a discrete set

of points (point matching) yields the system of equations

Eiij = 2.iiKi; + k02 Y Ei; - Ko (4.15)
The dyadic function
_ E.t:.‘ £zy
E = (4.16)
{y-t fyy

is a discrete kernel whose elements are given by

F o= (g [ Gletiahy Wele’ —mt/ — )i
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Ty 1 62 r ! ’ !
et” = Faxay l Gp(x, YT,y )¢v(-’5 —ZTm Y — y")ds

(4.17)
o _ 1 0?

7] Eazay o GP(za Y; I', y')d’z(z’ = I, y’ - yn)dsl

1 8 ' '
wo=AqQ +7§5a7),[,..... Gp(z, 452",y )y (2 — Ty ¥’ — ya)ds

where 0,,,, is the incremental surface element corresponding to the mnth cell on the
plate and all expressions are evaluated at (z,y) = (z, y;) upon differentiation. Obvi-
ously, the convolutional nature of the operation is preserved once the above functions
are evaluated at the appropriate field points. Applying the discrete convolution the-

orem in (4.15) now gives

E; = Z,;K,; + jkZ, DFT £ -K) (4.18)

[ [

where Z denotes the discrete Fourier transform of Z.

To calculate the elements of é, the partial derivatives may be carried out by finite
difference formulae. In particular, using a 3-point central difference scheme ( 2.23 ),
we find that

E= 'icl? k- D: -D:D, £ (4.19)
°\ -D,D. k-D?

where £ is the discrete Fourier transform of the sequence(assuming piecewise constant

basis functions)

e_jkovz +y d

fmn = ./g""‘ 4Wm L] (4.20)
and
D, = k,sinc(k,%—z) (4.21)

D, = k,sinc(ky%) (4.22)
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as given in ( 2.24). It is noted that { has an integrable singularity when z,,=y,=0
corresponding to the self-cell interaction. This term can be evaluated analytically

using one of the following approximations:

Approximate integration: From [49]

ﬂ)
Az

1 r 1
oo =~ —{Azln tan (Z+§ta.n'1

s
r 1 PRAY 4 AzAy
+ Ayln {tan (4 + 5 tan Ay) —]koT} (4.23)
Taylor series expansion: Expanding the integrand of (4.20) as [50]
—jk,R 3 2 . 3
e Ik ~ 1 . (JkoR) (Jko.R)
% (1 —jk.R+ T "6 (4.24)
£oo can then be expressed as
1 k2 k2 g
foo bang G(I] ]k 12 - '2—13 +J—I4) — Azi y-_--Az.I. (425)
where
1
L = //-R;-ds=zln(y+R)+yln(z+R)
I = / ds = Asz
3 3
- Zyr. T v
I, = //Rds_ j 5y +R) + L n(z + B)
R
L = [[Rds= =
Circular disk approximation:
2 rro _jkor
foo =~ / / “—rdrds
= '-20 e’ k°r°/ 2smc( 5 —=2) (4.26)

where

ro =/ AzAy/7 (4.27)
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Figure 4.1 shows a comparison of these expressions for £,, for square cells (Az =
Ay = A) of different sizes. As seen, they all give values that are essentially indis-
tinguishable for A < 0.1X. The remaining terms .., are evaluated numerically via
Gaussian quadrature integration. Using the above formulations, computations were
performed for a variety of plate sizes and shapes under two different excitations,

namely, plane wave excitation and Hertzian dipole excitation.

4.2.3 Plane Wave Scattering

Plates have been of considerable interest in plane wave scattering because they
often represent building blocks in the simulation of more complex configurations of
practical interest. An understanding of their scattering characteristics can, there-
fore, provide insightful information for design applications. In this case, simple high
frequency formulae are usually more suitable, but unfortunately, available expres-
sions have not been found to yield accurate results. On the other hand, numerical
simulations demand an excessive storage requirement making the CGFFT solution
metho& attractive for such simulations.

Consider the plate in Figure 4.2 illuminated by a plane wave

El = E,eJke(ki-r) (4.28)
H = Zii,.xE‘ (4.29)

where Z, and k, are the free space intrinsic impedance and wave number, respectively.

In the above, k; is the unit propagation vector
k= —[sin 8,(Z cos ¢, + § sin ¢,) + Z cos 8,) (4.30)

and

E, = £Eo; + §Eoy + ZEo
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Figure 4.1: Evaluation of the self-cell element using approximate integration (—),
four-term Taylor series expansion (---), and circular disk approximation
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with
Eo; = Ey(cosacosb,cosd, —sinasing,)
Ey, = Eo(cosacosb,sing, + sin acos @,) (4.31)
Ey, = —Epcosasind,

where o represents the polarization angle of the incident field. It is the angle between
E'! and 8. In particular, when a = 0 then H: = 0, corresponding to H-polarization,
and o = 7/2 then E! = 0, corresponding to E-polarization incidence. Upon evalua-
tion of the current K, the scattered field is given by

e_jkof

E’(oa ¢) = _jkoZo Nt(oa ¢) (432)

4rr

where (r, 0, ¢) are the spherical coordinates of the observation point. Also,

N(6,8) = GNy(6,8) + dNoy(8, 6) (4.33)
N(0, ¢) = cos 6 [cos $52(0, ) + sin ¢S, (8, ¢)] — sin 65, (6, ¢) (4.34)
Nig(6, ¢) = —sin ¢5,(0, ¢) + cos $5,(9, ¢) (4.35)
and
S(0,8) = [ [K(a',y")ettoomtle'etsy/sindlgpr gy (4.36)

The field E* can also be described as that attributed to the radiation of the plate

currents and is responsible for the radar cross section of the plate defined as

E?. p 2
o= lim 41rr2|——p'|—

lim B (4.37)

in which p, is a unit vector denoting the polarization of the receiver.
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First, it is of interest to examine the current distributions on the rectangular plate
as it has a rather unique and predictable behavior, particularly for principal plane in-
cidences. Figure 4.3 depicts three-dimensional views of the co- and cross-polarization
currents on a 2\ x 2) conducting plate. An important observation with regard to
these plots is the high current density values near the edges and the dominance of
the co-polarized current component relative to the cross-polarized component. The
singular behavior of the K, currents at the edges is generic to perfectly conducting
structures with sharp edges. These singularities are responsible for the diffracted
fields and are the primary source of difficulty in numerical simulations. As  in-
creases, the strength of the cross-polarization currents also increases effecting the
behavior of the co-polarized currents, especially those toward the back edge of the
plate. When 8 = 90°, K, have their greatest strength. They are concentrated near
the side edges and are responsible for the travelling edge waves which, although not
radiating at backscatter, are crucial in determining the back edge co-polarized cur-
rent behavior. The lobing structure of the edge currents is particularly interesting
and unique to all rectangular plates regardless of their size. Generally, for an A xnA
plate, the magnitude of the co-polarized currents are associated with n maxima near
the front and back edges, whereas the cross polarized currents have 2n maxima near

the side edges.
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(a)

Figure 4.3: E-polarization plane wave scattering from a 2) x 2) conducting plate at
normal incidence (6; = 0°, ¢; = 90°, a = 90°); No. of samples: 66 x 66;
FFT pad size: 512 x 512. (a) Co-polarized component of the current
density. (b) Cross-polarized component of the current density.



85

(b)
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Since the RCS of a structure is an easily measured quantity, it provides a means
for validating the solutions. Using the computed plate current densities, the radar
cross section (RCS) of the plate can be found in accordance with (4.37). Figure 4.4
illustrates the convergerice of the far zone scattered field (using pulse basis) by a
square perfectly conducting 2X x 2) plate as the size of the FFT pad is progressively
increased. In all cases the algorithm was terminated when the residual reached a
normalized value of about 0.01. Also shown in Figure 4.4 is the improved result
using the CGDFT method. It is observed that an FFT pad of order 1 (minimum
size) is sufficient when using the CGDFT to yield results that are in agreement with
the measured data. In contrast, at least a pad of order 3 (along each dimension) is
required to obtain acceptable results when using the CGFT method and although the
general behavior of the backscattering cross section approaches that of the measured,
the convergence to the measured value is not clear near grazing incidence even with
higher order pads. The principal plane backscatter RCS patterns as computed via
the CGDFT for the 2) x 2X square plate are compared with the measured data in
Figure 4.5. The results are seen to be in very good agreement in this case.

Often of interest is the computation of the plate’s edge-on scattering. As is
well known, for edge-on incidences the plate currents are rapidly varying and this
makes their computation a more challenging task. The accuracy of the proposed
formulations can therefore be best evaluated by examining the edge-on scattered
field. Some measured data for the edge-on radar cross section have been reported
in the literature. For example, Figure 4.6 shows the edge-on behavior of a plate
of constant width (b = 2)) and varying length (2 < a < 2.5)) with the electric
field aligned with the shorter side reported in [51]. As can be seen, they compare

quite favorably with corresponding values computed via the CGDFT formulation.
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Figure 4.4: Comparison of backscatter RCS patterns for a square 2A x 2) conducting
plate as computed via the CGFT and CGDFT methods using FFT pads

of various orders (E-Pol., normal incidence).



88

It should be noted that the CGFT method employing the continuous transform of
the Green’s function was found inadequate for an accurate prediction of the edge-on
scattering behavior [48].

The radar scattering from a polygonal plate is shown in Figure 4.7 along with
the corresponding measured data [52]. The scattering characteristics of geometrically
complex targets may also be simulated by approximating the target by a polygon

of n sides. This is illustrated in Figure 4.8 where the plate has been modeled as a

polygon of 8 corners.
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Figure 4.5: Backscattering pattern of a 2A x 2) conducting plate.
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Figure 4.7: E-polarization scattering from an irregular-edged conducting plate. (a)
Geometry. (b) Elevation-plane backscattering CGDFT result ( — ) com-
pared with measured data [52] (o o o).
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Resistive plates are considered next. In practice conducting surfaces are replaced
with resistive cards for cross section reduction purposes. By defining the surface
resistivity Z, as a function of position, different resistivity tapers may be treated.

As an example, the résistivity can be expressed by a nonlinear function

Zy(z,y) =Z.+ (2. - Z.) [(Iz—gﬁ—"') ) + (%—1) y] (4.38)

where Z; and Z. may be considered as the resistivities at the center and the edges of
a rectangular plate, respectively and 7, and 7, denote the tapers in the corresponding
directions. Figure 4.9 shows the effect of uniform and non-uniform (parabolic) resis-
tive tapers on the monostatic cross section of a 2X x 2 plate. The bistatic behavior
of a polygon of 5 sides in the azimuth plane of § = 60° is shown in Figure 4.10. Also

shown is the result for the same plate with a parabolically tapered resistivity given

by
Zy(z,y) = %— [__(z/)z) — 2] + % [___(y/)\2) — 2] (4.39)

where Z, is the intrinsic impedance of free space.

The convergence characteristics of the CGDFT solution for a square 2\ x 2\
conducting plate illuminated under normal incidence is shown in Figure 4.11. At
each iteration, both the normalized residual error, R, and the incremental error in

the backscattering cross section, Ao are given. These are respectively defined as

IAd,.] - E|
R, = ——— 4.40
IET (4.40)
and
Aoc=0,—0,-1,dB (4.41)

where m denotes the iteration number. It is observed that for far field calculations,

accurate results can be obtained in much less number of iterations than that required
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to reach the true solution for the current density. In this case for example, an
incremental error of 0.1 dB (a relative error of 2%) in the backscattering RCS was

reached within only 6 iterations. At this point, the normalized residual error was

about 18%.
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Figure 4.9: E-polarization scattering from a square 2\ x 2X plate with and without
resistive taper. (a) Backscatter RCS patterns for conducting plate (—),
uniformly tapered plate Z, = Z,/4 (- - -), and parabolically tapered plate
(---). (b) Three-dimensional view of the parabolic resistive taper for the
plate (Z,_,. =0).
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Figure 4.10: E-polarization scattering from an irregular conducting plate with and
without resistive taper. Incidence angles: 6, = 60°, ¢, = 0°; Sampling
density = 225/A%. (a) Geometry. (b) Bistatic scattering patterns with
(- - -) and without (—) resistive taper. (c) Three-dimensional view of
the parabolic resistive taper for the plate.
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Figure 4.11: Convergence rate of the CGDFT solution for a square 2) x 2) conduct-
ing plate at normal incidence.
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Figure 4.12: Geometry of an arbitrarily oriented Hertzian dipole in the vicinity of a

plate.

4.2.4 Radiation of a Dipole in the Presence of a Plate

In this section, we consider the problem of radiation by a Hertzian dipole in the
presence of a resistive plate, illustrated in Figure 4.12. The dipole is centered at
(Z1,91,21), is of length £ €« X and carries a constant excitation current equal to
unity. Its presence excites currents on the resistive plate which contribute to the
overall radiation pattern. To compute the plate currents we must solve either (4.12)

or (4.18) with the incident field given as

(4.42)

)

E; = (E.# + Ep0).

E, = (E.¥+ Eo)- (4.43)

w)

where the primes indicate spherical system parameters measured with respect to the

coordinate system at the dipole as shown in Figure 4.12. We have

1 e~iker’
E.. = 2Z,k,¢ lJ-jkor' 41rkr’2(z - 7) (4.44)
. 1 1 g~ ikor’ ~ 3
Ey = jZ,k,C 1+jlcr’ - o | Tar 1-(2"-7) (4.45)
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in which 7' denotes the dipole orientation and can be represented as
7' = cos ¢, sin 8,% + sin ¢, sin ¢,§ + cos 6,2 (4.46)

where (8,, ¢,) are the spherical angles of the dipole axis with respect to the plate’s
coordinate system. Also, ' = r'#’ is the vector drawn from the dipole’s location to

the observation point on the plate and

x 7 (4.47)

Numerical results based on a solution of (4.12) are given in Figures 4.13 through
4.18. An FFT pad of order ¢ = 2 and piecewise sinusoidal basis functions were
used to generate these results. In particular, Figure 4.13 illustrates the current
components on a perfectly conducting and a resistive 1A x 1) rectangular plate due
to illumination by a vertical electric dipole positioned at a distance A/4 above the
center of the plate. Figure 4.14 shows the spectrum (the magnitude of the Fourier
transform) of the x-component of the current density. The principal plane radiation
patterns of the dipole are shown in Figure 4.15. As seen, the pattern computed with
the CGFT is in good agreement with that based on the MoM. The corresponding
results for a horizontally oriented dipole above the same plate are given in Figures
4.16 through 4.17.

Finally, the improvement obtained in the convergence rate of the CGFT technique
when using piecewise sinusoidal (PWS) surface expansion functions is illustrated in
Figure 4.18. As before, an estimated 100 percent improvement in the convergence

rate was observed when the PWS basis functions were employed.
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Figure 4.13: The excited surface current density on a 1A x 1) conducting plate ir-
radiated by a vertical Hertzian dipole positioned a distance A/4 above

the center of the plate; 25 x 25 unknowns and FFT pad of order = 2.
(a) X-component. (b) Y-component.



105

Al
i

]
il
. :\M )

Vit

)

.b.;l'*‘\‘"'
Wl

Ay
;"“\“\\“\‘t‘\

W

Figure 4.14: The spectrum of the surface current density (x-component) on a 1A x 1A
plate irradiated by a vertical Hertzian dipole positioned a distance A4
above the center of the plate (25 x 25 unknowns and FFT pad of order

0=2).
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(a) (b)

Figure 4.15: The principal plane radiation patterns of a-Hertzian dipole vertically
positioned at a distance A/4 above a 1) x 1) conducting plate computed
by the MoM (—), and CGFT (e e ¢) using sinusoidal basis functions.
(a) E4 pattern. (b) E4 pattern.
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(b)

Figure 4.16: The excited surface current density on a 1A X 1) conducting plate irra-
diated by a horizontal Hertzian dipole positioned a distance A /4 above
the center of the plate; 25 x 25 unknowns and FFT pad of order ¢ = 2.
(a) Co-polarized component. (b) Cross-polarized component.
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Figure 4.17: The principle plane radiation pattern (Ey) of a Hertzian dipole hori-
zontally positioned at a distance A\/4 above a ')\ x 1) conducting plate
computed by the MoM (—), and CGFT (e e ¢) using sinusoidal basis
functions.
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Figure 4.18: Improvement in the convergence rate of the CGFT solution for the
problem of a hertzian dipole positioned above a conducting plate: Si-
nusoidal basis functions (---), conventional FFT (delta basis) ( — );
25 x 25 unknowns and FFT pad of order p = 2.
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Figure 4.19: Geometry for a dielectric cylinder illuminated by a plane wave.
4.3 Scattering by Dielectric Cylinders

We now turn our attention to the problem of scattering by an inhomogeneous
isotropic dielectric cylinder of relative permittivity ¢,, as shown in Figure 4.19. The

cylinder axis coincides with the z-axis and is infinite in extent in this direction. It is

illuminated by a plane wave given by (4.28) incident at an angle § = /2
Ei = Eoejko(zcos¢o + ysin ¢,) (4.48)
where
E, = E,[sin a(—Z sin ¢, + §sin ¢,) — Z cos a cos ®.)

To solve for the scattered field, we Introduce the equivalent polarization current

density (see (3.23))

I= ’Zk"(e, ~ 1ET, (4.49)

within the cylinder, where ET is the total field given by

ET=E +E*=Z2.J, (4.50)
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in which
- jko(€r — 1)

The governing system of integral equations is now obtained by substituting for the

Z. (4.51)

scattered field in (4.50). For an arbitrary polarization of incidence we have
Ei(p) = Z(p)3(p) + ik:Z, [, 3(#") - T(p; p)ds’ (4.52)

where I' is now given by
1 & 1 92
0 0 \

( lo, 1L 9
(1+ k? 6:1:2) k? 0x0y

_1__?2_ (1 + .l._az_
k? Bydz k2 By?

Law |
Il

) 0 | Gelpip) (4.53)

\ 0 0 1)
and

1
G.(p;p') = 4—jH§”(ko|p d) (4.54)

Following the same procedure discussed earlier in connection with the plate prob-

lem, we may write

M-1N-1
I(z,y) = ,,.Z=o ;z; Jun - Bmn(z,y) (4.55)
where
Bmn(z,y) = B(z — Zm, ¥ — ¥n) (4.56)
®(z,y) = £24:(2,y) + §§é, (2, ) + 22¢:(2,y) (4.57)

and ¢, denotes the expansion function in the £-direction.
The two-dimensional continuous Fourier transform of G. is given by (Appendix
B)

1

Gc(kz’k!l) = kg + kz _ k?,

(4.58)
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However, as noted earlier, the use of (4.58) in the CGFFT solution of (4.52) will
result in aliasing errors. An additional difficulty will also arise because of the ring
singularity of (4.58) occuring when k2 + k3 = k2. The inherent approximation in
the implementation of the inverse FFT that the transform be constant over each cell
is obviously not valid for those cells coinciding with the ring singularity. This can
cause substantial errors and often leads to the failure of the discrete system as an
acceptable representation of the continuous one.

To correct both of the above sources of error, the procedure described earlier
can be employed here as well. That is, the original continuous integrals are first
discretized before proceeding with their evaluation via the discrete Fourier transform.

The new discrete system of equations is expressed as

i k,
E'; = Z.4;3; 4Z ZA,, Jmns (4.59)
where
(= ¢ 0
A= (v (w0 (4.60)
0 0 CZ:

which should be compared with (4.15) and (4.16). Similarly, the non-trivial entries

of A are now given by

io= (1+k26y2)/ H (2,45 2',4):(2' = T,y — yn)ds’

G = kzazay/ HP (2,4, 2',¥)6y(2' — Ty ¥’ — yn)ds’

1 &
y:z: = — (2) « ! ’ Y] _ ) _ ’
1] kg azay ronm HO (3, ¥,y )¢:(I Tm, Y yn)ds (461)

W= (1+k262)/ H (2,y;2 ',y )by(z' — Tm, Y — ya)ds’

¥ = [ BG4 )b ~ 2 — ya)ds’
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which may be considered as the ‘cylindrical counterparts’ to (4.17) since Omn here
denotes the incremental surface element corresponding to the mnth cylindrical cell
on the target. Again, these expressions are evaluated at (z,y) = (zi,y;)- Applying

the convolution theorem to (4.59) yields the final form of the system of equations

E;; = Za;Jij + Egzzﬁ DFT “*{A -3} (4.62)

where
k}—-D? -D;D, 0
= 1 -
A= -DD. k2-D2? 0 ¢ (4.63)
0 0 1
and D, and D, are given by (4.21)-(4.22). In the above, { is the discrete Fourier

transform of the sequence

Con = / H (k,\/2 + y?)ds (4.64)

This integral can be evaluated numerically except when (m = n) which corresponds
to the self-cell term. When (m = n) we must resort to an analytical evaluation

similar to (4.26) as [36]:
1 (2) ]
Coo = ﬁ-[rkroHl (kro) — 2j] (4.65)

with ro as given in (4.27).

To illustrate the accuracy of the above formulation, the bistatic scattering from an
infinitely long triangular cylinder is shown in Figure 4.20. The cylinder is perfectly
conducting and as seen, our result agrees very well with a corresponding direct

solution provided in [53].
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Figure 4.20: Scattering from a conducting triangular cylinder illuminated by an E-
polarized plane wave. (a) Geometry. (b) Comparison of bistatic echo
widths obtained from the CGDFT method (—) and the direct method
(o 00) [53].
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4.4 Summary

Two formulations for a conjugate gradient solution of the scattering by plates
of arbitrary shapes were presented. One of the formulations (CGFT) employed the
sampled (truncated) continuous transform of the Green’s function for the evaluation
of the convolution integrals. The other (CGDFT) employed finite duration discrete
Fourier transforms for the evaluation of the same integrals. As with the strip problem
studied in the previous chapter, the latter method was found to provide an accurate
simulation of the plate scattering by eliminating aliasing errors (other than those
due to under-sampling). It was also found to be substantially more efficient than the
former method. Furthermore, it was noted that the convergence of the solution is
substantially faster for plates of non-zero resistivity and this is attributed to the less
singular behavior of the edge currents.

The CGDFT method was also applied to the problem of scattering by dielectric
and conducting cylinders of arbitrary cross sections and a degree of accuracy and

efficiency similar to the plate problem was observed.



CHAPTER V

GENERALIZED IMPEDANCE BOUNDARY
CONDITIONS

5.1 Introduction

Generalized Impedance Boundary Conditions (GIBC) are higher order bound-
ary conditions which involve derivatives of the fields beyond the first. They have
been found to be more effective than the traditional first order (standard) conditions
(SIBC) in modeling thick dielectric coatings and layers. The GIBCs offer several ad-
vantages in both asymptotic and numerical analysis of electromagnetic pi‘oblems‘ For
example, in the case of high frequency analysis, they allow an accurate replacement
of a coating on a layer with a sheet boundary condition amenable to a Wiener-Hopf
analysis [14, 54], or some function theoretic approach [55]. In numerical analysis, the
profile of a coating can be replaced by a simple boundary condition on the surface of
the coating. This eliminates the need for introducing unknown polarization currents
within the volume of the coating or material layer, thus leading to a more efficient
solution from the numerical standpoint.

A convenient form of these conditions is expressed in terms of the normal derjva-

tives of the field components
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M a, O™E,
E (_jko)m onm™ -

m=0

(5.1)

M o OH,
E (—jko)™ On™ -

m=0

where the subscript n denotes the normal component to the surface and a,, and a;,
are constants specific to the material and geometrical properties of the structure.
These constants are chosen so that the application of the boundary conditions will
reproduce the desired scattering behavior of the surface or coating layer under con-
sideration. They can be derived by employing a suitable expansion of the coating’s
Fresnel reflection coefficient and by matching the constants of the expansion to those
of the compatible conditions implied by the GIBC (5.1). Since for a given problem,
the electric and magnetic fields may not be specified independently, the coefficients

an and a, are related by the relation [13]

(B (me)-(me)lme) o

which is a form of duality condition. The integer M in (5.1) is the order of the

conditions. For example, when M = M’ = 1, we have a first order condition

0 ’H"‘Tnk‘a;f!:ﬂ (5.3)

1 0E,
" jk,n On -

The above first order condition can be shown to be equivalent to the standard
impedance boundary condition (SIBC), also known as the Leontovich boundary con-
dition [56]-[58], provided n = a,/a; = a/d, is identifie.. as the normalized surface
impedance of the sheet. The SIBC is often used for simulating material coating on
conducting bodies and in this case the normalized surface impedance 7 is given by

n=2_ jg tan(RE,t) (5.4)

a;
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where t is the coating thickness and R = , /6,7 is the index of refraction. The validity
of this SIBC has been examined by several authors [57], [59]-[61] and in general it

holds when
Rl > 1 (5.5)
and
ISmi[kt > 1 (5.6)

The first condition ensures that within the medium, the field behaves essentially
as a plane wave propagating in the direction of the inward normal to the coating.
The second condition, on the other hand, imposes the requirement that the inward
traveling field suffers enough attenuation so that no outward traveling waves exit at
the interface due to reflection. Also, for inhomogeneous materials, the SIBC remains

valid if the lateral variations of the impedance in the medium are slow, that is
1
’—Vq' <1 (5.7)

where V denotes gradient in coordinates transverse to the normal.

Inherently, the SIBC does not permit modeling of polarization currents which are
normal to the layer and is thus most suited for near normal incidences. However, by
increasing the order of the condition, it is possible to allow accurate simulations of
fairly thick layers and unlike the SIBC, the accuracy of the higher order conditions
improves as the incidence angle approaches grazing.

A third order GIBC derived recently [62] for the simulation of high contrast

dielectric coatings is given by (5.1) with M = 3 and

a0 = (R - 2%) [tan(Nkot) _ tan (%)]
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= _je |1+ tan(Rk,)tan (2
a = Jef 2R

1 kot 1
a2 = 53 {tan(Rkot) — tan (2N) + kot (N - ﬁ) (5.8)

pe—c]
- on (3]

a) = (R—;R) [1+tan(Rk ) tan (’;Rt)]

P )

21

| x

az =

Jkoter
2R

and

r - L Et) _ - i)
@ = o33 {1 + tan(Rk,t) tan (2R R R (5.9)

[t e (k—)}}

v Jkotpr k.t
@ = on [1 + tan(Rk,t) tan (2&)]

'Z

The GIBCs are usually applied at the toi) layer of the surface under study. How-
ever, in some applications it is desirable to apply the conditions at another plane
of reference. This is convenient for a coating on a ground plane where one may be
interested in invoking the image theory. In such cases the original coefficients a,,

must be replaced by (Appendix C)

A= TR m=0..M (5.10)

!
n= n.
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where t denotes the transfer distance.

5.2 Two-dimensional Impedance Inserts

In the two-dimensional case, the impedance insert is assumed to be infinite in
length with no field variations along the z-direction (% = 0). The insert is assumed
to satisfy a generalized impedance boundary condition at its surface. This may serve
as a model of a partially coated conducting plane or a material filled groove whose

scattering behavior under plane wave illumination is of interest (Figure 5.1).

Introducing the equivalent magnetic current density over the insert we have

M,=E;
M=Exna : (5.11)
M, = _Ez
and by imposing the continuity of the tangential field components an integral equa-
tion for the current density can be obtained and solved numerically.
In the following, we will derive integral equations for the equivalent current den-

sity based on a third order generalized boundary condition (M = 3). The two

principal polarizations are treated separately.

5.2.1 H-Polarization
The incident fields are assumed to be of the form
H' = 3elke(zcosdotysings) (5.12)

E' = Z,(Zsine, — §cos ¢,) elkelzcosdotvingo) (5.13)

and the first of the conditions (5.1) is relevant in this case. For a third order condition
we write

3 am OME,
Z ('—jko)m aym B

m=0

0
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Figure 5.1: Simulation of a partially coated conducting ground plane by an
impedance insert.
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or equivalently,

as 32 ay as 62 s _
(ao - k2 6y2> E, + (_jko + 7k 6y2) ayE" =0 (5.14)

In order to derive an integral equation on the basis of (5.14), it is desirable to
work with transverse derivatives. This allows for a convenient application of the
Fourier transform to solve the resulting integral equation. To do so, we note from

the divergence relation that

V.-E =0, —¥=-_ (5.15)

and from the wave equation

(v2 + kg) E = 0, iﬁ” = - (kf,’ + %) E, (5.16)

Introducing these into (5.14) along with (5.11), we have

1 92 1 1 8\] &
[1 + F (1 + k—gﬁ)‘] E, + jTa [Fl + F; (l + E@)] %Mz =0 (5.17)

where

ar

Fo==, (=123 (5.18)

0

and E, is the component of the total field normal to the coating. It can be expressed
as the sum of the geometrical optics field in the absence of the sheet (short-circuited)

and the scattered field in its presence
E,=E{°+E,=E,+E +E! (5.19)

Since the tangential electric field vanishes over the conducting ground plane, the

reflected field is given by

E, = E, = —Z, cos ge’to=e=%e 4y = (5.20)
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Also, the scattered field can be expressed as as

s _ 1 w/2 ! 2 (2) ! !
= _/;w/22M,(z)azHo (ko|z — 2'|)dz (5.21)

where the factor of two has been introduced in accordance with the image theory.

Substituting these into (5.17) yields

1 82 19 w/? ! (2) ’ '
2 [1 + F, (1 + i 6:1:2)] {4] 32 Jouys M, (z"YH? (k,|z — 2'|)dz

(5.22)

_z e koTcos o +1 F,+ F 1+—1--£ E-M()—O
o COS @€ jko 1 3 kg@::’ 9z 2\ T ) =

To eliminate the z derivative, we integrate both sides with respect to z and obtain

(1+ Fysin® ¢,) Z et~ L L (14 L 2|
+ ro8In” @, o€ - 9 1 + I3 + kg o2 I(I)
(5.23)
1 8% \| k, fv/? ,
o= Do (2) _ !
" [1 +F, (1 ' 612)] 2 [ MU e - <)
which is the desired integral equation in M,.
5.2.2 E-Polarization
The incident fields in this case are of the form
E' = zeitolzomsotysingo) (5.24)
H' = —(Zsing, — jsin@,)Y,eik(Eeossotusinde) (5.25)

and the appropriate boundary condition is given by the second relation in (5.1) with

M=3

’ / [ 2
(a; - ﬁfz—) H, + (-—T’L + 4‘3—%) iHy =0 (5.26)
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Again, using the divergence relation and the wave equation and following steps sim-

ilar to those taken for H-polarization, we obtain

! 4 L & H F |1 L& Y M, =0 2
F+F; 1+k—3§ =+ |1+ F, +-k—3@ oM, = (5.27)
in which the definition of F; is analogous to that given for F; (see (5.18)) and

H,=HZS° + H:=H. + Hl + H? (5.28)
Imposing the condition on the tangential electric field, we find that

H: = H! = —Y, sin ¢,e ko790 yy=0 (5.29)

and write the scattered magnetic field as

kY, 1 92
s . 20 —_— NH? - .
H: = (1 + 3 2) /21%,(2: YH *) (k,|z — 2'|)dz (5.30)

Substituting these back into (5.27) yields the integral equation

. 1 1 &
' 22 : koxcosdo __ i —_—
(F{ + Fisin® ¢,) sin ge’ =3 [1 + F (1 + 63,)] M, (z)

(5.31)
4 ! 1 9? ko 1 62 /2 ’ (2) ’ ’
+ [Fl +F (1 + F%)] = (1 + k_g@) /:/2 M(2)HD (ko|z — 2'|)dz

to be solved for M,.

5.2.3 Specialization to SIBC

As mentioned earlier in this chapter, the SIBC formulation has been traditionally
applied to coated conducting bodies as well as dielectric filled metal-backed cavities.
The above integral equations can be readily reduced to those corresponding to the
SIBC formulation by setting F;, = F} = 0, £ = 2,3 in accordance with conditions

(5.1). Doing so yields

. w/f2
ZoeJkozcou#o = —M,(:L') + %‘/ p M‘(xl)ng)(kolz - x’l)dx' (532)
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for H-polarization and

. 1 8% w/2
sin @oeiFeT 0o = %M,(x) + (1 + —-—) M,(x')Hﬁz)(kolx - z'|)dz’

-w/2
(5.33)

1 .. . .
for E-polarization where 5 = Fy = 1/F] = a1/a, is identified as the normalized

surface admittance of the insert.

5.2.4 CGFFT Formulation

The integral equations (5.23) and (5.31) are amenable to a solution via the
CGFFT method. To put them into a suitable form, we first discretize the magnetic
current density using the piecewise constant basis functions and follow an analysis
similar to that presented in Section 3.3.4 in connection with the scattering from a

strip. The integral equations are then put into the form

[l + Fy(z) sin? ¢,,] Z, e koTcondo —

[Fl(x)M (z) + -—Fa(:r) DFT ~* {(k2 - Dg)ﬂz}]

[ RN

+DFT ' {M,T} + —Fg(z) DFT ~* {(k? - D) M. T} (5.34)
and

[Fl’(z) + F:;(I) sin? ¢o] sin ¢oejkozcoc¢° -

4.0+ i) DT (82 - pyit.)|

1
2 k2

1G]
k2

Fj (.7:)

DFT - {(k? — D2)M,T} + == DFT ~* {(k? — D2*M.T}

(5.35)
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where the spatial dependences of the F and F' coefficients are expressed explicitly
to allow for slow lateral variations in the electrical properties of the sheet and T
is the discrete transform of the train T,, defined in (3.85). It is noted that the
spatial derivatives are carried out relatively easily in the transform domain as was
the case in the strip problem. A CGFFT implementation of (5.34) and (5.35) is a

straightforward task.

5.3 Three-Dimensional Impedance Inserts

In the previous section, we presented an implementation of a third order GIBC
for scattering by a two-dimensional impedance insert simulating an infinite groove
recessed in and/or a coating on a ground plane. Here we present a corresponding

implementation for the three-dimensional case.

5.3.1 The Integral Equations

Consider the geometry shown in Fig. 2 illuminated by a harmonic plane wave

H' = H,e ik (5.36)
E = ZH xk (5.37)
where k; is given by ( 4.30)
ki = — [sin 6,(Z cos ¢, + §sin ¢,) + £ cos §,]

k, is the free space wave number, and Z, = 1/Y, is the free space intrinsic impedance.
Also,

H,. = Y,(sinacosé,cos¢,+ cosasin ¢,)

H,, = Y,(sinacosb,sin@, — cosacos¢,) (5.38)

H,, = -Y,sinasiné,
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and

E,, = cosacosf,cosd,—sinasing,
E,, = cosacosf,sin @, + sinacos P, (5.39)
E,, = —cosasinf,

in which o represents the polarization angle of the incident field (when o = 0 then
Hi = 0, corresponding to H-polarization, and when a = 7/2 then Ei = 0, corre-
sponding to E-polarization incidence).

As before, the application of the conditions (5.1) over the surface of the impedance
sheet requires the introduction of a magnetic current density vector M(z,y) as de-
fined in (5.11) with both transverse components present. A surface integral equation
for M can then be derived by following a procedure similar to that discussed for the
two-dimensional analysis. Before doing so, however, it is again instructive to rewrite
the boundary conditions in terms of the tangential derivation. This is expected to
directly yield a symmetric set of equations with respect to M and M,. From [13]

we find that conditions ( 5.1) are equivalent to (M = 2)

1 OB | 1@, of:

Be = —PH A+ 0% YR P oy
(5.40)
1 QE, 1Q,0H,
Ey — PZon+jkoQ ay —jkOP’ [-] 63:
where
p = B2tb (5.41)
a
= &
=2 (5.42)

and analogous expressions hold for the primed quantities P’ and Q'. To derive the
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integral equation, we invoke (5.11) (note the new coordinate system)

M, =E,
M=Ex#

M, =-E,
and rewrite the conditions (5.40) as

1 ., LQOE: 1 Q  oH:
FM”'Z"HV ko P 8z | jk, PP'“° By

1 QOB 1 @  9HS

_ GO _
= Z.H, jk, P Oz jko PP'7° 8y
(5.43)
1 . 1 QOE 1 Q’ OH:
pMe = ZoH: - jk, P a jk, PP'"“° 8z
GO i GO
=zmoo 4 L9 1 O, 0,
jko P Oy ]k PP oz
where we have also made use of the definitions
E = Ei+Er+E:=EGO+EJ
(5.44)

H = H5+Hr+H.=HGO+Hn

Again, the superscript GO specifies the geometrical optics fields in the absence of the
sheet and the superscript s specifies the scattered field in its presence. By imposing
the boundary conditions on the tangential components of the electric field over the

perfect conductor, we find that

E' = (=E..% — E,j+ E,3)e %"
(5.45)

H = (H.Z+ Hy§ — H,,5)e (k0
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where
k, = — [sin 6,(Z cos ¢o + §sin @) — Z cos §,] (5.46)

is the unit propagation vector for the reflected fields. The scattered magnetic field
may be expressed in terms of the equivalent magnetic current density as
H* = —jkY, / /; T(r;r') - [2M(r')}ds’ (5.47)
where S denotes integration over the surface of the sheet and
T= (I + EVV) Gp(r;r') (5.48)

is the free space dyadic Green’s function with the factor of two accounting for the

presence of the ground plane. More explicitly,

,__2].1/:: 1 2 62 62
Hz" z,y)(k ag)+M( ’y)aa G(l‘l')
(5.49)
F ] 2.7Yo r ! 32 ! 62 /
H)=- i /S[M,(z,y)%a—y-i-My(l',y)(k2+ﬁ)]Go(r§r)ds
(5.50)

and

2_7Y

2
H: = / [M (', y )— +M y(Z ,y’)—a—!%] Go(r;r')ds’ (5.51)

Rewriting the last equation and making use of the identity (Appendix D)
a / 1 !
62G(r, r)= —ES(r -r) (5.52)

it follows (from distribution theory) that

H,=JYo 0

0
1= L2\ Maa ) + 5 My(e:y) (5.53)



130

To formulate an integral equation from (5.43), we also need to express the normal

compone:.t of the scattered electric field £? in terms of M. We have

s ! ri ' 1_2 s\ T
E'=2 /S [M,(x,y)ay— y(m,y)az] G, (r;r')ds (5.54)

Substituting now for the field quantities in (5.43) yields

2P

1
2P

M

2 2

ki/s [M,(:r’,y') (kg 662) + M,(', )aaa ]G (r;1')ds’

1 Q ra i_ ' Ii _a_ N )
5P S[M,(:c,y)ay My(z,y)az] ayGo(r',r)als
1 Q@ o0 0

2 PP 8z |0z M. (z,y )+ Mv(z y)]

[Z,Ho,,. + % sin 4, sin ¢°E',,,] exp{jk, [sin 8, (z cos ¢, + ysin ¢,)]}

(5.55)

M (z,y)

J ' om0 . & o
k_o[g[Mz(x’y)azay +Mv(z’y)(k3+—az’;)]Go(r;r)ds

Ly 9 ! ’_a- 4 -
E'ﬁ[g [Mz(-‘t ’y)ay -M,(z ,y)az] azGo(r,l‘)dS

1 @ 0 o
3 PP 3y [—M( z,y) + M(I,y)]
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= [ZOHW - % sin 8, cos ¢0Eo,] exp{jk, [sin 6, (z cos ¢, + y sin ¢,)]}

(5.56)

which is a coupled pair of integral equations to be solved for M; and M,.

5.3.2 Specialization to SIBC

The first order (standard) impedance boundary condition is obtained from (5.41)-

(5.42) by letting a; = a3 — 0 eliminating the corresponding terms in (5.40)
E. = —-PZ,H,
(5.57)
E, = PZ,H,

where P = a,/a, = 1, may be regarded as the normalized surface impedance of the

sheet. Expressing these conditions in vector form, we may write
E-(fR-Eyn=nZAixH ' (5.58)

In view of (5.57), equations (5.55) and (5.56) reduce to the simpler pair of integral

equations

LMz )+-j-/ M, (z,y) k2+32- + M,(z' ’)—92—-G(-')d’—ZH"
2, z\ Ty Y k, Js (T, Y o T B2 W,y azay ol T )as = Loll,

(5.59)

1 _.7_ [ 62 !t 2 _3_2_ ot ' {
M)+ [M,(z,y) oo+ M) (K4 2 ) |Gutrins = 2.8,

(5.60)
As expected when 7, — oo, indicating an open gap in a conducting screen, these
equations further reduce to the dual of those pertaining to a perfectly conducting

plate already discussed in Chapter 4.
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5.3.3 CGFFT Formulation

In order to put the integral equations (5.55) and (5.56) into a form suitable for a

CGFFT, we expand M(z,y) in piecewise constant basis functions. In particular, we

set

Nz=1Ny-1
M(z,y) = Z Z M, P(z — z,)P(y — Yq) (5.61)

p=0 ¢=0
where z, = pAz + 42, y, = ¢Ay + %“ and M,, = ZM_,, + §M,,, represent the

unknown coefficients of the expansion function. Employing this expansion, we may

rewrite the surface integrals as

— N,—lNy-l —
/S M(r) - To(rir)ds' = 3 3 M, -E; (5.62)
p=0 ¢=0

where E;; is given by ( 4.16). Applying the discrete Fourier transform, the above

further reduces to

/S M(r') - To(r; r')ds’ = DFT ~{€ . K} (5.63)

where & denotes the discrete Fourier transform of Z and is given by ( 3.109). Em-

ploying this result in (5.55) and (5.56), yields
Fl(xv y)Mz(z) y)
2 1 ([ — ~
+ k—':DFT ! {[Mz(kg -D3) - MszDv] f}
2 -1 {(M D2 _ M 3
+ % Fale,y)DFT {(M.p? - M,D.D,) £}

- LDFT{M.D?+ M,D.D,}
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= 2[Z,H,; + Fi(z,y)sind,sin ¢,E,.] exp{jk, [sin 8, (z cos ¢, + ysin ¢,)]}

(5.64)

and

Fl(x’ y)Mv(It, y)

+ i—jDFT" {[-#.D.D, + M, (¥ - D})| £}

+ jio Fy(z,y)DFT™ {(-M.D.D, + M,D}) 3

L)

T DFT~*{M.D.D, + M,D}}

= 2(Z,H,, — F)(z,y)sin8, cos ¢, E,.) exp{jk, [sin b, (z cos ¢, + y sin é.)]}

(5.65)

which are applicable for a solution via the CGDFT method. In the above,

1 Q

F1=‘13' F2="P‘

and the spatial dependence of the F' coefficients are again shown to indicate the

presence of a slow planar variation in the electrical properties of the sheet.

5.4 Summary

In this chapter, we introduced the generalized impedance boundary conditions

and studied their incorporation in the general CGFFT formulation. The formulation
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was applied to the simulation of what could be referred to as generalized impedance
inserts. In particular, a third order GIBC was applied to the simulation of two-
dimensional impedance inserts while a second order condition was considered in
the three-dimensional case. In both cases, the first order (SIBC) formulation was
obtained by setting the appropriate higher order coefficients to zero.

The combined GIBC/CGFFT formulations discussed here can be used in the
study of partially coated conducting planes as well as cavity-backed apertures re-
cessed in a ground plane. These structures may be adequately represented by
impedance inserts with appropriately chosen coefficients. This will be the subject of

Part Two of the Thesis.
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Part 11

SCATTERING BY CAVITY
STRUCTURES



CHAPTER VI

SCATTERING BY MATERIAL FILLED
GROOVES

6.1 Introduction

The study of electromagnetic scattering from filled cavities recessed in ground
planes is important in modeling the radar response to various man-made structures.

In this chapter, an exact full-wave formulation is first developed for the rectangu-
lar groove problem based on the Generalized Network Theory [63]). This theory has
been applied to a number of aperture and slot problems in the past [64', 65]. In this
method the external fields are expressed in terms of the scattering integral while the
fields internal to the dielectric medium are given in terms of appropriate waveguide
modes specific to the particular problem. An integral equation is then set up by
employing the equivalence principle and enforcing continuity of the electromagnetic
fields across the interface. This method, although rigorous, is computationally in-
tensive and is limited in application to structures whose electrical size is relatively
small. Moreover, due to the nature of the formulation, a solution is possible only
for canonical geometries for which the orthogonal wave functions associated with the

cavity can be found.

Next, the formulation is specialized to narrow grooves. Analytical expressions for
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the equivalent magnetic current distribution over the aperture of narrow grooves are
derived based on a quasi-static approximation of the pertinent integral equations.
The solutions exhibit the expected edge behavior at the terminations and are used
to find closed form expressions for the echo width of the groove.

Finally, an approximate formulation based on the GIBCs is presented and shown
to be amenable to the CGFFT method of solution having an order O(/N) memory
requirement. In contrast, the exact integral equation does not lend itself to such a so-
lution and must be solved by a matrix inversion approach having an O(/N?) memory
requirement. It is found, unfortunately, that the GIBC formulation yields satisfac-
tory results only when the contributions of the groove’s terminations are negligible.
This is because the GIBCs were derived for a coating without terminations and must
be supplemented by more accurate conditions in the vicinity of such material discon-
tinuities. A hybrid procedure is, therefore, introduced that combines the exact and
GIBC formulations. The proposed procedure utilizes the solution obtained from the
GIBC/CGFFT in a region sufficiently away from the terminations and then finds the
near-edge currents based on the exact formulation. Despite an'increase in the com-
plexity of the formulation, the memory requirement of the hybrid method remains
essentially of the order O(NN) and can be used when the material constituency of the

filling does not allow the application of neither SIBC nor GIBCs of higher order.

6.2 Full-Wave Formulation

Consider the infinitely long groove of width w, and depth d illuminated by the

plane wave

H'( or Ef) = ze*e(zcosdotysindo) (6.1)
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- —>

Figure 6.1: Geometry of a filled rectangular groove.

for H- (or E-) polarization, where k, = 2x/) is the free space wave number and ¢,
is the angle of incidence (Figure 6.1). The groove is assumed to be filled with a
material of index of refraction R = ,/e;;i;. A standard approach to formulate the
scattered field by the groove is to employ the equivalence principle [66]. Accordingly,
the aperture is closed by a perfect conductor and the equivalent magnetic current

(Figure 6.2)
M=ExAa=Exg (6.2)

is introduced over the aperture at y = 0. The scattered fields outside the cavity are
those radiated by the equivalent magnetic current and consistent with the continuity
of the tangential electric field, the field inside the cavity is that radiated by —M
placed at y = 0~ across the aperture. To find the equivalent magnetic current we

must also enforce the continuity of the tangential magnetic field across the aperture.

We have

i x [H (M) + H*| = 7 x HY(M) (6.3)
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where H* is the total field on the ground plane in the absence of the groove (aperture
short-circuited), H® represents the tangential scattered field above the aperture and
H? is the total field below the aperture. To construct an integral equation in M,
H°® and H® must be expressed in terms of the Green’s function corresponding to
each region. The external scatteréd field (attributed to M) can be expressed as the

surface integral
w/f2 -
He(r) = —jk.Y, / L 2M() T ) (6.4)
-w/f2
where Y, is the intrinsic admittance of the free space and T is the two dimensional

dyadic Green'’s function
I(z;2) = 1 1+ l--Qf-)i.’f + 25| H®(k,|z — z'|) (6.5)
’ 45 k? 0z ° e )
and a factor of two was introduced in (6.4) based on the image theory to account for

the presence of the ground plane.

The internal fields (those attributed to M’) can be written in terms of the TMzand

TEzwaveguide modes as
E'=E™ 4+ ETF = —jkZy(29™) - V x (307F) (6.6)
Hb =HT™ L HTE = V x (39™) — jkY,(2¥7F) (6.7)
where k, = Rk, is the wave number inside the cavity and Z, = 1/Y, is the intrin-

sic impedance of the filling material. The functions Y™™ and ¥TZ are the wave

potentials both satisfying the scalar wave equation

i d?
(ﬁ+?a?+kf)\l’=0 (6.8)

subject to the boundary conditions
E, = E,=0 ; y=—d (6.9)

E, = E,=0 ; z =tw/2 (6.10)



140
on the cavity walls, and
M =Ex# y=0 (6.11)

over the aperture.

Below, we consider the two principal polarizations separately.

6.2.1 H-polarization

For H-polarization (TEzcase) we have
Hi® = Hine 4 g8 — gpikozconds (6.12)

which is the geometrical optics field in the absence of the groove. The tangential

component of the external scattered field is given by

koY, v/

HI(M,) = =2 /_‘.: M HO (kofz — o)z’ (6.13)

while the internal fields are given by (6.6) and (6.7) and in this case we have

E'=E" = _Vx(307F) = -53—‘1\1’" + ga—axq:TE (6.14)

H' =H™® = —jkY,(z97F) (6.15)

In order to find useful expressions for E® and H?, we need to solve for the wave
potential ¥TE. To this end, ¥TF can be expressed as an infinite sum of orthogonal

modes

UTE = 3 Ay (6.16)
p=0

where ) are the waveguide modes all satisfying the wave equation (6.8) and A, are

coefficients to be found. Substituting for ¥7F in (6.14), and using (6.9)-(6.10), the
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Figure 6.2: Application of the equivalence principle to aperture problems.
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boundary conditions to be imposed on the cavity walls are

6_y y = 0 y=—d (6.17)
0 b _ -
5% = 0 T=dFuw/2 (6.18)

and a set of eigenfunctions which satisfy these and the wave equation is
h T
¥, = coslky(y + d)] cos [TD-(:z - w/2)] (6.19)
where k, satisfies the separation parameter equation
T
k2= kP — (%)2 (6.20)

We now seek to find the coefficients A,. Upon enforcing the condition (6.11) on the

aperture (y = 0), we find that
3" ky A, sin(kyd) cos [”Tv’i(x —w/2)]=-M =M, (6.21)
P
Multiplying both sides by cos [%(z — w/2)] and integrating over the aperture yields

> k,Apsin(kyd) [://: cos [%(:c — w/2)] cos [%(z - tb/2)]da:

_ w/2 M qr d
= i () cos [;(z - w/2)|dz (6.22)

and by invoking the orthogonality relation

“22[1+6po] P=q

/_‘://22 cos [%(x — w/2)] cos [%(z —w/2)]dz = (6.23)
0 P#q
we find
_ 2 /2 pr
= [1 + bpo)wky, sin(kyd) /::,,, M. (z)cos [—~(z — w/2)ld= (6.24)
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where 6, is the Kronecker delta defined in (3.117). Thus, the function ¥7* in

(6.16) is completely defined and the magnetic field in the internal region may now

be expressed explicitly as

. ad 2
Hizy) = =ikY L e Tot sn(kd)

p=0

w/22 M,(z") cos [%r-(z’ — w/2)]dz’

-—w

which at y = 0 gives the tangential field just below the aperture

H(z,0) = —jkY f: e 6,°]wi,,tan(k,, 3 con (2 (e —w/2)

: LW/QQ M. (z') cos [-’z(x' - w/2)]dz’

w/ w

This is equivalent to expressing the tangential internal fields as

/2
by —_ — AV LY S 1
H(=M,) = —jkYs /:"  Mi() G (a3 )iz

w

where the Green’s function is given by (see (6.26))

Gh(z,z') = g Py t2a.n(k,d) cos [25(::: — w/2)] cos [%(I’ — w/2))

and
ep =146,

Substituting (6.12), (6.13), and (6.27) into (6.3) we obtain

» /2
Zoe_;kozcou#o = .’;_° o2 Mz(z/)H‘S?)(kolz -_ z’l)dz

> cos[E(zr —w w/2
+ S BB [ ) on e~ w2l

coslks(y + )] cos [~ (2 — w/2)]

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)

(6.30)
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where 7, are the normalized H-mode impedances of the cavity given by

k.
Thp = ]k—”zb tan(k,d) (6.31)
b
and z, = /4, /¢, is the normalized intrinsic impedance of the internal region. Equa-

tion (6.30) is an exact integral equation to be solved for M,(z).

6.2.2 E-polarization
For E-polarization (TMzcase), we have
H® = —2Y, sin ¢, eFo=cos e (6.32)

and the corresponding tangential scattered fields are given by

k.Y, 1 8\ w2
a = =2-9° —- ’ (2) o ’
H2(M;) = =% (1+k3 6::2) /_ o MV HP kol = 2'))da (6.33)
and
/2
H)Y(-M,) = —'%/w/ M. (2')G*(z; 2")dz’ (6.34)
b J-w/f2

To find the cavity Green’s function G° we note that

E' =E™ = _jk2,(z0™) (6.35)

.0 .0
b ™ T™ ™™ ™
H =H = Vx(z¥ )—za\I’ ya\Il (6.36)

Following steps similar to those taken for the H-polarization case, the wave po-

tential UTM s expressed as
VM = 3" Byt (6.37)
p=0
and the boundary conditions to be satisfied on the walls are

¥ =0 y=-d (6.38)

P = 0  z=w/? (6.39)
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which are satisfied by chhosing ¥/ as
c . (P%
¥: = sinlky(y + d)] sin [;(z — w/2)] (6.40)
and k, is defined in (6.20). Enforcing now the boundary condition (6.11) on the
aperture, we have
. . PT
3" ky B, sin(k,d) sin [-;(z —w/2)] =M, (6.41)
)
To find B, we multiply both sides by sin [-q;:r-(a: — w/2)] and integrate over the extent
of the aperture. As before, by employing the orthogonality relation

w
_2'[1 —61!0] Pp=4q

/w/z sin [2X(z — w/2)] sin [1=(2 — w/2)]dz = (6.42)
e ’ 0 P#4q
we find
2% w/3 . DT
B, = _jkbw sin(kpd) ,/_w/2 M;(z)sin [‘1'0‘(1‘ - w/2)]dz (6.43)

The magnetic field in the internal region may now be expressed explicitly as

Hiz) = g i oty <oty + Olsin 27z ~ w/2)]
. '/-"1:,//22 M_,(z')sin [Ewl(z' - w/2)|dz’ (6.44)

which upon setting y = 0 gives the tangential aperture field

Hi20) = i3, 5 gty o e — w/2)
.‘:,/22 M(a')sin [ (' — w/2)]de’ (6.45)

Comparing this with (6.34) we deduce that

G(z;2') = — f: ﬁk{k,_d) sin [%(a: — w/2)]sin [%(:c' - w/2)} (6.46)

r=1
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Substituting (6.32)-(6.34) and (6.46) into (6.3) yields the integral equation

1 3

: k
: krcosdo _
sin ¢, e’ = (1 + = ¥ 922

w/2
) M,(z')Hg'*‘)(kop - z'|)dz’

sl @ WD) o in B - v/l (647)

p=1 WNep -wf2

where
ks
Nep = Jk zp tan(k,d) (6.48)

are the normalized E-mode impedances of the cavity. Equation (6.47) is an exact
integral equation to be solved for M(z).

Clearly, (6.30) and (6.47) are both invalid when
tan(kpd) =0 (6.49)

and this occurs only when the material filling the groove is lossless. To be specific,

the modal solutions fail if there exist integers p and ¢ such that!

Ey+@r=(Ty  pgez (6.50)

This difficulty in the evaluation of the internal Green’s functions may be circum-
vented by assuming a small loss in the material. We also note that for the proper

behavior of the field in the internal region, we must have

Re {k,} >0 (6.51)
Sm{k,} <0 (6.52)

when usi: - (6.20).

!The formulation for the H-polarization case also fails if k, = 0 in addition to (6.49). This is
equivalent to p/w = ¢/d when p,q € Z.
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Upon a solution of the integral equations, the scattering echo widths of the groove
may be calculated from (3.44) and (3.45) with Z,K, and K, replaced by 2Y,M, and
2M,, respectively, and the polarization subscripts e and h interchanged in accordance

with the image theory and Babinet’s principle [19]. Thus,

2

w/2 .
on = kY, / /2M,(:r')e"‘°"°°“’dz’ (6.53)

Q

(6.54)

o)
o
il
>
Qo

w/2 .
sin ¢/ M,(z')c’k""’ cosdy!
~w/f2

6.2.3 Numerical Solution

The integral equations derived in the previous subsections may be solved numer-
ically by the moment method and will serve as the reference for the validation of the
results obtained from alternative formulations presented in the rest of this chapter.

Considering the H-polarization case, the integral equation (6.30) may be dis-

cretized by expanding M,(z) as

N-1 A
M.(z) = Zo M, (z,)P(z — z,), z, =nA+ 5 (6.55)

where P(z) denotes piecewise constant basis function. Substituting for the current
expansion in (6.30) and applying point matching, the admittance elements are given

by
Ymn = Tmn + Hmn (6.56)

where T,,, are elements attributed to the external tangential fields and are given by
(3.85), while I, are those attributed to the internal tangential fields and are given

by

Mpn =8z ), ————cos [ —(zm — P (zn— PT 22y 6.
A pz=;) P cos [ ” (Zm — w/2)] cos | ” (zn — w/2)]sine( — ) (6.57)
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A similar discretization can be carried out for E-polarization.

Figure 6.3 shows a sample calculation of the backscattering echo width for an
empty groove based on the above formulation. The groove is assumed to be 10\
long and the usual physical optics approximation (1.26) was invoked to relate the
two-dimensional echo width given by (6.53) or (6.54) to the corresponding three-
dimensional radar cross section. The results are in good agreement with a corre-

sponding finite element method (FEM) solution [67)].

6.3 Partially Loaded Grooves

We now consider the partially loaded groove shown in Figure 6.4. If the filling
material is electrically dense, we may consider the equivalent problem of a homoge-
neously filled groove of depth d terminated with a floor consisting of an impedance
sheet. In this case, the boundary conditions on the cavity walls and the aperture
of the groove remain the same as (6.10) and (6.11), while the floor satisfies the

impedance boundary condition (5.58)
E-(y-E)§y=nZ.jxH (6.58)

where 7, is the normalized surface impedance of the floor. The above condition

replaces (6.9), and in scalar form

E.= nZH, y=-—d (6.59)

E,= -—n2Z,H, y=—d (6.60)

Following an analysis similar to that of the previous section, new integral equa-
tions can be derived for the solution « .he equivalent magnetic current density over

the aperture of the groove. In particular, employing the equivalence principle, the
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1.2

Backscattering Echowidth, a/A, dB

H-Pol(MM)  ® H=PoI(FEM) ]
0 ] .E.-.?.O.I(M.M.). o E-%l(m) “‘\
~10 -
=20 - \
]
-30 . ’ , ' ’ : : .
90 120 < 150 180

Angle of Incidence ¢ , deg.

Figure 6.3: Comparison of the backscattering patterns of a long two-dimensional
groove obtained from a finite element solution (FEM) [67] and the
method of moments (this study). The groove is assumed to be 10X long.
(20 samples/ A with 60 waveguide modes).
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\ Impedance Sheet, n,

Figure 6.4: Scattering from a groove partially loaded with electrically dense material.
(a) Geometry. (b) Equivalent problem using an impedance sheet.
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tangential magnetic fields in the external and internal regions are expressed in terms
of the pertinent Green’s functions and used to enforce the continuity of the fields
across the aperture. In this case, the expressions for the external fields remain un-
changed and are given by (6.13) and (6.33) for H- and E-polarizations, respectively.
As for the internal fields, the Green’s functions G* and G° must be modified to
accommodate the new boundary condition on the groove’s floor.

Considering the H-polarization case, once again the wave potential U7 is ex-
pressed in terms of an infinite sum of orthogonal modes as in (6.16). The new

boundary conditions to be satisfied by these modes are

9 » . A

-5;4), = 1eZo(jksYotbp) y=—d (6.61)

0

b?”: = 0 r=tw/2 (6.62)
A set of eigenfunctions satisfying the second condition along with the wave equation
is

h — [ pikp(y+d) —jkp(y+d) pT :
Y = [e 4 — Rpe™7% ] cos [;(z - w/2)] (6.63)

where R}, is the reflection coefficient of the floor and k, is defined in (6.20). Enforcing

the second condition yields
jke(1+ Ra) = m,/;—'jk.,(l — Ry) (6.64)

which upon solving for R, gives
k

e — f‘zb
Ry = (6.65)
bt )
e+ kab

Upon imposing the equivalent current condition (6.11) on the aperture and solving

for the new set of coefficients A,, we find

_ 2.7 w/2 pr
A = epwky(ei*e? + Rpe=i*»d) [-w/2 M, (z) cos [;(x — w/2)}dz (6.66)
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and, therefore, the new Green’s function is given by

X 25 [eitd ~ Ryeikd L s
h = J A PT . PT o
G*(z,z') = p§=0 "y ij’d T Rhe‘j"rd] cos [ ” (z — w/2)] cos [ — (z' - w/2))

(6.67)

where €, is given by (6.29). Employing the above results, the integral equation to be

satisfied by the aperture current for the H-polarization case is

. ko w/2
Z, eikorconde — 2 /_w/z M, (z")HP (k,|z — z'|)dz

x cos [BEE(z — w/2 w/2?
p=0 spwnhp —w/2

M. (z') cos [%(:r' — w/2)]dz’ (6.68)

where 7}, is the normalized equivalent surface impedance of the groove looking into

the aperture, given by

ne + jzl,ﬁ tan k,d
ky

.k
Jmk—: tan k,d + z,

Mhy = 2 (6.69)

For the E-polarization case, the boundary conditions to be enforced in the internal

region are

U= nZikYiZy)  y=—d (6.70)

e = 0 z=tw/2 (6.71)

P

suggesting the following form for the eigenfunctions ¥,
e — [eiks(v+d) ~skp(v+d)] i 2X
Y, = [e » + R.e™7% } sin [;(x —w/2)] (6.72)

where R, is the reflection coefficient of the floor given by

ks
Ne — j._-zb
e kpzb
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Solving for the mode amplitudes B,, we find

—2Y, w/2
Jwhky(efkpd 4+ R e-3kpd) J_

B, = M (z)sin [—(:r: - w/2)]dz (6.74)

and the new Green’s function is given by

. > —2k, eikrd — R e ikpd
G(z,2') =3 [ejk,,d T R.e-iknd

p=1

] sin [%(m — w/2)]sin [%r-(:c' — w/2)]

(6.75)

w

Employing the above results, the integral equation for the E-polarization case is

obtained as

. 2 w/2
sin ¢oe'7kzc°s¢° = k (1 + _]:2 _aa 2) Mx(ml)H£2)(ko|x - m’l)dxl
e

o e — w/2)

r=1 wnep

/_‘:}/ M_(z")sin [Ewl(x’ — w/2)]dz’ (6.76)

where 7, is the normalized surface impedance of the groove looking into the aperture,

given by
k
N + jzbk—b tan kpd
Nep = 2b A P (6.77)
ij: tan k,d + 2

It is noted that (6.68) and (6.76) are identical to (6.30) and (6.47) with the only

modification that the normalized mode impedances n;, and 7., are replaced by the

normalized equivalent impedances 7}, and 7., looking into the aperture. It is also

noted that if the groove is terminated by a perfect conductor, 7, = 0 and

ﬂ;:p =Nhp ﬂ;p = Nep

and the formmulation reduces to that of the homogeneously filled rectangular groove.
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6.4 Dominant-Mode (Quasi-Static) Formulation

For large apertures, a numerical approach is the only alternative to the solu-
tion of (6.30) and (6.47). However, in many cases the characterization of narrow
width grooves is of practical interest. With this motivation the narrow groove has
been modelled as an impedance insert in an effort to simplify the analysis [68]. Un-
fortunately, the resulting quasi-static integral equations were not amenable to an
analytical solution but, nevertheless, it was possible to derive accurate empirical
echo width formulae through the examination of numerical data. This was essen-
tially done without a direct (analytical) evaluation of the current on the impedance
insert.

In this section we consider the solution of the integral equations for a narrow
rectangular groove without invoking the impedance approximation used in [68]. It
is shown that by retaining the dominant mode supported by the rectangular groove,
the resulting quasi-static integral equations are comparable to those associated with
the perfectly conducting narrow strip considered in Section ( 3.3.2). They are there-
fore amenable to analytic solution yielding the exact field distribution or equivalent
currents across the groove’s aperture. The derived currents exhibit the an edge be-
havior similar to that associated with the currents of a perfectly conducting half
plane or strip. On the other hand, the corresponding current behavior based on
the (numerical) impedance simulation of the groove is quite different. However the
resulting echo widths are comparable.

The derived analytical expressions for the equivalent aperture currents are of
potential importance in constructing suitable models for long and narrow three-

dimensional apertures. A 'so, unlike the echo width formulae given in [68], t} -se
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derived here are valid for all groove depths and material fillings. In this sections,
the exact integral equations derived for a two-dimensional rectangular groove will
be simplified to the case of a narrow width groove and solved for the equivalent
magnetic currents across the aperture. The accuracy of the currents is examined by
a comparison with the numerical data. Simple echo width expressions are also given

for the principal polarizations which are treated separately.

6.4.1 H-polarization

When kw < 1, the Green’s function G*(z;z') can be substantially simplified by
retaining the first term of the sum, corresponding to the lowest order mode in the

cavity. The integral equation (6.30) then reduces to

1
2w,

Z,,ejk’ cosdo

w/2 r ’ ko w2 nrr(2) ’ '
/_ M+ /_ Mo HD (koo ~ <)) de

(6.78)

where

™= J\ /%- tan(kyd) (6.79)

is the normalized impedance of the dominant mode which can be also identified as
the normalized impedance at the surface of a grounded slab of thickness d. 1t is
interesting to note that if the first integral in the right hand side of (6.78) is replaced

by wM,(z), then (6.78) reduces to
: M. (z) k, vl
Z, ekecosdo = I 4 2 nH(2) — +'Ndz’ )
e 2 + 1 -/-w/2 M, (z")H (k,|x — 2'|)dz (6.80)

which is the integral equation based on the impedance boundary condition

E.(z) = qa2,H,(z) (6.81)
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applied over the extent of the aperture (see equation (5.32)). On the other hand, the

integral equation (6.78) is based on the relation

- / p Bel@)de! = mZLH () (6.82)

This observation reveals the inherent local nature of the impedance boundary con-
dition and its underlying assumption that the current is more likely to be slowly
varying. Not surprisingly, (6.80) predicts a rather smooth behavior of the current
distribution near the edges of the groove at z = +w/2. In contrast, a numerical
solution of (6.78) gives the usual singular form of M,(z) at the same locations. An-
other interesting property of the “boundary condition” (6.82) is the independence of
the left hand member from x. This property will be exploited later to arrive at a
closed-form solution to the integral equation.

To further simplify (6.78) for k,w < 1, we introduce the small argument expan-

sion for the Hankel function as we did for the narrow strip,
H®(z) =1 - j= 2 1n ( ) +0(2%, 2% 1n 2) (6.83)

where Iny is Euler’s constant. Substituting this into (6.78) and retaining only terms

to O(kw) we have

W/2 ’ P 27r
-/-wn M.(z')n |z - £'|dz’ = ]TZ
1 koy | w2 N s
+ [jk.,wm. —m( : ) j 2] /_ L Me(a)de (6.84)
Further, by introducing the same change of variables as ( 3.51)
2z , 2z
f=—, =— (6.85)
w w

(6.84) becomes

L M) n e - €1ag = iz +[jk’;%—1n('“°4ﬂ) 12'1 [ ML(§)de’

(6.86)
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The above singular integral equation can be inverted by noticing that the right hand

side of (6.86) is independent of £, and upon invoking the identity ( 3.54)
1
f (1-2z%) Y|z —2|de'=-7rln2 z€[-1,1]]
-1

we find

M(E) = Zoxn(1 — €)Y = Z, ol (6.87)
1- [ 2=
w/2
where x, is a complex constant given by

45

Xh = ' y
k. wy vy 2
hoo (552) 33 (1 )|

It is noted that the aperture magnetic current (6.87) has a functional form exactly

(6.88)

similar to that of the electric current of a narrow strip ( 3.56). In fact, when g, — oo

corresponding to an open slot, we find that

4j
ml.l—qloo Xh = kowey T (6.89)
kow |In . + 3

which is analogous to the E-polarization result obtained for the narrow strip (3.58).
This result is, of course, expected based on Babinet’s principle [19, 66).
6.4.2 E-polarization

A similar derivation can be carried out for E-polarization. By retaining the lowest

order mode in the groove, (6.47) becomes

: 1
. jhxcosdo __ ’
sin ¢,e = o cos(-—-) / M,.(z') cos —dx
k, 1 92
+—( t ©5s 2) / M. (z\HO (k |z — z'|)dz’ (6.90)
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where

kb

e =iy s £ tan(kyd) (6.91)

is the normalized wave impedance of the lowest order mode with
2 2 m\?
k= k2 — (E) (6.92)

Next, by introducing the small argument expansion of the Hankel function and the

change of variables defined in (6.85) we obtain

sing, = 2; ( )/ M(E)oos( )d§

2
~rimdm L, MOl - e (6.93)

where we have retained only terms to O(kw). An approximate solution for M, can

now be obtained by satisfying (6.93) at { = 0. We have

d2 1 ’ . . 1 1 , ) ’
d_fz./-l M (&N n|¢ = ¢'|dE’ = jnk,w [81n¢o—- -27”—3-‘/—1 M. (¢ )cos(%{ )¢

(6.94)

whose right hand side is independent of {. Thus, by invoking the identity (3.55)
= / V1—-z2hn|z—2'|dz' == z € [-1,1]

the above integral equation is inverted and M, may be expressed as

Mo(€) = x/1-€2 = qu 1- ('5/3) 2 (6.95)

where -+, is given by

_ Jkowsir ¢,
Xe = 1 + jkole(W/2) (6-96)

Ne
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and J; denotes the first order Bessel function. In arriving at this result, we also

made use of the identity [69]
1
/_1 V1 — z2cos(puz)dzr = E%Jl(”) (6.97)

It is noted that 75, is generally inductive for kw < 1, and thus the derived
expression for x. is nonsingular within the expected validity range of (6.95). Again,

as 1, — oo corresponding to an open gap,

lim x, = jkowsin ¢, (6.98)

T)e—+00

which is analogous to the H-polarization result obtained for the narrow strip ( 3.59).
The far zone scattered field at a point (p, ¢) in cylindrical coordinates can be
computed from (6.53)-(6.54). Upon approximating the exponential eikoz’ co8d with

unity, we have

2

W/2 ’ ! 2 Tw
on = ko|Y, /_ - Mi(ede’| = k| o (6.99)
and
o0 = ko|sin ¢ / " M (z')dz’z— k| =2 sin¢|2 (6.100)
e = 0o —w/2 z - (-] 4 XG .
which in the backscattering direction, yield
on = - 27 YL (6.101)
o (557) 433 1+ 52
8 2 kownh
4
i (2k?w¢)
0% =1 - (6.102)
2 Il +0.56962 n""’

Before a detailed examination of the the above quasi-static results, we remark

that the same analysis presented above is applicable to a narrow groove whose floor
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Figure 6.5: Geometries of some gaps and crack of practical interest.

satisfies an impedance boundary condition. In this case the mode impedances 7, and
7 are replaced by the corresponding normalized equivalent impedances 7, and 7l
looking into the aperture. This allows an analysis of partially filled narrow grooves
as well as narrow cracks of simple shapes (Figure 6.5). For such geometries, a quasi-
static or empirical estimate of the impedance may be used (68].

The derived formulae for the gap echo width and aperture currents are based on
low frequency approximations to the exact integrals. They are thus expected to be
valid for small groove widths and it is, therefore, of interest to examine their accuracy
limitations as the width of the groove increases. Also, of interest is a comparison
of the analytical echo width formulae derived here with the corresponding empirical
ones given in [68].

Figure 6.6 presents a comparison of the derived H-polarization current distribu-
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tion (6.87) versus that obtained from a numerical solution of the full-wave integral
equation (6.80). Similar comparisons are also given in Figure 6.7 for E-polarization.
In both cases ¢, = 7/2 and for this incidence the expressions (6.87) and (6.95) are
in good agreement with the exact data (although only amplitude comparisons are
shown, good agreement was observed for the phase as well). This holds independent
of ¢, for small w. As the groove width increases, however, the exact current is to
an increasing extent a function of ¢, and as noted in [68]) the angular dependence
is noticeable for w > 0.15). Since the quasi-static H-polarization current (6.87)
is independent of ¢,, it is then applicable up to this value of w. Nevertheless, we
have found that for normal incidence, (6.87) is quite accurate up to w = 0.25A and
its accuracy improves for filled grooves. For E-polarization, the derived quasi-static
current solution is an explicit function of ¢, and, therefore, remains accurate for all
angles of incidence up to w = 0.25A.

Comparisons of the echo width formulae with numerical data are given in Figures
6.8 — 6.11 for the H-polarization and Figures 6.12 - 6.13 for the E-polarization case,
respectively. These results correspond to the backscattering computations at normal
incidence (¢ = ¢, = 7/2). It is observed that the quasi-static formulae remain
accurate for all groove depths provided w is kept within its validity bounds. The
empirical formulae given in [68] were generally found to agree with these results,
except near the resonance regions for the H-polarization where the empirical formula
fails. This is illustrated in Figure 6.11 for an empty groove whose resonant depth is
d = 0.234) when w = 0.1\. Also, in contrast to H-polarization, the E-polarization
echo width does not display any resonant characteristics for small w since there is

no traveling mode in the cavity. In fact, for w < 0.2}, the E-polarization echo width

of an empty groove is independent of depth for d > 0.1X.
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Finally, we remark that the above solutions are of potential utility in the analysis
of long three-dimensional (finite) grooves. For example, Figure 6.14 shows the radar
cross section from a 2.5) long groove whose width and depth are A /4. In this case,
the quasi-static result was obtained from (1.26) based on the physical optics ap-
proximation. Good agreement with the full-wave three-dimensional moment method

solution (Chapter 7) is observed.
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Figure 6.6: H-polarization equivalent surface magnetic currents for a groove of width
w = 0.1\ and depth d = 0.2); Comparison of analytical and numerical

data.
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data.
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Figure 6.8: H-polarization normal incidence echo width for a groove of depth d =
0.2) as a function of width for three different material fillings.
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Figure 6.11: Comparison of the quasi-static and empirical solutions [68] with numer-
ical data as a function of width for d = 0.234 (near resonance).
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Figure 6.12: E-polarization normal incidence echo widths for an empty groove as a
function of width (d = 0.2)); Comparison of the quasi-static, empirical

[68], and numerical solutions.
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6.5 GIBC Formulation

In the previous sections, we presented a rigorous full-wave formulation for com-
puting the scattering by a filled rectangular groove in a ground plane. This was
further approximated to the case of a narrow groove based on a quasi-static anal-
ysis of the pertinent integral equations. In this section, we present another class
of approximate formulations for the general analysis of grooves which make use of
generalized impedance boundary conditions.

As mentioned in Chapter 5, the material filled groove may be simulated by a
two-dimensional impedance insert. Indeed, we have already encountered the SIBC
formulation for the groove in equation (6.80). In this section, we examine the accu-
racy of this boundary condition as well as those of higher orders.

Consider first the SIBC. In this case, the integral equations (5.32) and (5.33) are

applicable and by setting Fy = F, =0, £ = 2,3 in (5.34) and (5.35), we obtain

Z, ekomconde %Fl(a:)M,(z)+ DFT ' {M.1} (6.103)
and
sin goeitoromnde = _1__pg (z)+iDFT-‘{(k2—D2)ﬁ T}
2F/(z) ~ k2 o~ Ye)ls

(6.104)

which are subsequently solved by the CGFFT method.

Figure 6.15 shows the amplitude and phase of the equivalent magnetic current
density for a half-wavelength deep (in free space), two wavelengths wide rectangular
groove filled with a lossy material of high index of refraction. In this case, the

conditions (5.5)-(5.6) are satisfied

IR|=77 [SmR|k.d=55
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and the agreement with the full-wave solution is very good. In contrast, when the
groove is filled with a relatively low contrast material, SIBC is no longer applicable
as the validity conditions of SIBC are violated (Figure 6.16).

Consider the same groove, now simulated by an impedance sheet (insert) satis-
fying a third order boundary condition. In this case, the integral equations (5.23)
and (5.31) are applicable and the CGFFT implementation is given by (5.34)-(5.35).
From Figure 6.17, it is seen that the GIBC solution agrees reasonably well with the
exact one except near the groove terminations.

Generally, the current distribution based on the proposed third-order GIBC is
not of acceptable accuracy when within 0.25) of the groove’s terminations. However,
because it is in good agreement with the exact current distribution elsewhere, one
approach in retaining the memory advantage associated with the application of the
GIBCs is to combine the exact and GIBC formulations. This is discussed in the next

section.

6.6 Hybrid Exact—-GIBC Formulation

Based on the above discussion, a procedure for combining the exact and GIBC
formulations is to feed the currents predicted by the GIBC integral equation (5.23)-
(5.31) away from the edges into the exact integral equation (6.30)-(6.47). The last
can then be solved for the remaining currents in the vicinity of the groove termi-
nations. This only requires the inversion of a small matrix and hence the memory
demand is essentially unaffected.

To demonstrate this hybrid approach, let us consider the H-polarization and a
similar formulation applies to the other polarization as well. Suppose that M S(z)

denotes the current computed via the GIBC integral equation (5.23) and we choose
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to approximate the true aperture current as
{M,G(z) lz| < %~ za

ME(z) |z|> ¥ —z,

M. (z) = (6.105)

where MC denotes the unknown currents near the edges of the groove. To compute

MSE we substitute (6.105) into (6.30) and this yields

geikozooada fl",f,j;f:A MS(z") [jk,,Ybi(J:,z’) — &Y HA (k, |z — ::’l)] dz’

= — [T ME(2) [iksYiGh(z, 2') — Ele HO (k|2 — 2'))] da’

w/2
- f:/:-n Mzc(z’) [jkabi(-T, z') - k‘i&Hc(’z)(k"lz - xll)] dz’
(6.106)

Assuming that MS(z) has already been computed via a CGFFT solution of (5.23),
the entire left-hand side of (6.106) is known and thus, for z4 < 0.25,2a4 x4 ora
6 x 6 square admittance matrix is required for the solution of MZ(z). In general,
continuity of the current density must be imposed at the transition regions between
ME(z) and ME(z), and this can be accomplished through a simple averaging.
Figure 6.18 shows the results obtained for the aperture current density of the
groove considered before. Clearly, the proposed hybrid solution (HYBRID-3) pro-
vides the necessary correction near the terminations where the GIBC solution fails.
Bistatic and backscattering patterns corresponding to the same groove are given in
Figure 6.19. It is observed from these patterns that the SIBC solution is substan-
tially in error for angles near grazing. The same holds for the GIBC since, as is well
known, the contribution of the edge currents is a dominating factor in the compu-
tation of the echo width. Notably, the patterns predicted by the hybrid formulation

are always in good agreement with the full-wave moment method solution.
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6.7 Tapered Grooves

The GIBC formulation can be directly applied to the scattering from tapered
grooves, provided the constant coefficients associated by the employed GIBC are
allowed to vary. This, clearly, avoids a need to compute the Green’s function or to
use a more sophisticated technique such as the finite element method (FEM) [70].
The condition on the slow variation of the impedance for the SIBC is given by (5.7) in
addition to (5.5) and (5.6). However, it is possible to simulate more rapid variations
by using a higher order GIBC. Consider, for example, the non-rectangular groove
shown in Figure 6.20. In this case, the SIBC is inadequate in modelling the groove
while a direct application of the third order GIBC formulation is sufficient to yield

accurate results.
6.8 Summary

The problem of scattering from two-dimensional rectangular grooves was studied
using a full-wave analysis. The analysis is applicable to grooves terminated with
perfect of imperfect surfaces. This formulation was specialized to the case of elec-
trically narrow grooves by considering the dominant waveguide modes in the groove
and employing the finite Hilbert transform theory based on a quasi-static approxima-
tion of the resulting integral equations. Analytical expressions were derived for the
equivalent magnetic current distribution over the aperture of narrow grooves. The
solutions were found to exhibit the familiar edge behavior observed in the case of
narrow strips and slits. Using the derived current distributions, closed form expres-
sions were given for the echo width of the narrow groove and these were compared
with numerical data. Their accuracy was examined as a function of width, depth

and material filling and were found to be in good agreement with the echo width
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data based on full-wave solution for all angles of incidence, provided w < 0.15 for
H-polarization and w < 0.25) for E-polarization regardless of the groove’s depth.
The closed form solutions obtained here were found to be of potential use in the
study of the long and narrow grooves and could significantly simplify their analyses.

Furthermore, the scattering behavior of the groove was simulated by the impedance
boundary conditions. Both first order (SIBC) and third order GIBC formulations
were studied. The formulations based on these boundary conditions were found easier
to implement than the full-wave formulation. Also, unlike the exact integral equa-
tions, they were amenable to a CGFFT implementation. For high-contrast material
fillings, the SIBC was found adequate in modeling the groove. An analytical compar-
ison of the integral equation based on a SIBC simulation with that from a full-wave
formulation, revealed a well-known limitation of the SIBC formulation. That is, the
SIBC integral equation generates an average of the actual current distribution. By
resorting, though, to a third order GIBC the correct current behavior was reasonably
predicted away from any abrupt terminations of the groove. The predicted current
based on the GIBC simulation was in general incorrect near the edges and to correct
this defficiency, a hybrid approach was proposed. Specifically, the currents computed
via the GIBC formulation away from the rectangular groove terminations were em-
ployed in the exact integral equation to generate a small matrix for the currents
in the vicinity of the terminations. This was referred to as the hybrid exact-GIBC
formulation and was found to yield a reasonably good prediction of the scattering
by filled rectangular grooves.

Finally, when the groove terminations are not abrupt, the hybrid formulation is

not required and a direct application of the GIBC formulation may be sufficient.



CHAPTER VII

SCATTERING BY OPEN RECTANGULAR
CAVITIES RECESSED IN GROUND PLANES

7.1 Introduction

The characterization of apertures in a ground plane is of considerable importance
in radar cross section (RCS) and electromagnetic pulse (EMP) studies. Indeed, a
large body of work exists for the analysis of two-dimensional slits in a thick ground
plane [71]-[76] or cavity-backed apertures [77]-[79]. Extensions of these procedures to
three dimensional characterizations are possible, but so far this has oniy been done
for high frequency techniques. Numerical solutions for three dimensional apertures
have been limited to scattering and transmission by openings in a thin ground plane
[50],[80]-[82] primarily due to the excessive computational demands and complexity
of the solution. The only exception to this is the use of the mode-matching tech-
nique for the analysis of rectangular [67) and spherical [83] cavity-backed apertures.
Although in principle exact, the mode-matching approach leads to an infinite system
of equations in addition to being cumbersome. A need, therefore, exists to develop
numerical solutions for cavity backed apertures. Such solutions can provide a charac-
terization of this structure and could serve as a reference for validating new solution

algorithms.
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In this chapter we consider the scattering by a rectangular cavity-backed aperture.
The solution technique employed in the analysis is the full-wave moment method ap-
proach considered in the two-dimensional applications of Chapter 6. A fundamental
aspect of this method is to employ the aperture fields as the equivalent sources of
the fields interior and exterior to the cavity. The complete integral representation of
the fields within the cavity makes use of the modal Green’s function whereas that
external to the cavity makes use of the free space dyadic Green’s function. An inte-
gral equation for the aperture fields is then constructed by enforcing tangential field
continuity across the aperture. Except for being tedious, the entire solution process
is straightforward and in an effort to maintain the level of complexity to a minimum,
a pulse-basis moment method solution of the integral equation is first discussed. Thp
more useful roof-top basis is also presented. As can be expected, the roof-top basis
formulation leads to a more efficient numerical solution at the expense of additional
complexity. In either case, the admittance elements associated with the external
fields are identical to the impedance elements for a perfectly conducting plate. How-
ever, the major difference in computational efficiency among the two formulations
lies in the evaluation of the admittance elements associated with the internal fields.
These are given in terms of a double sum series whose convergence is substantially
improved when higher order basis functions are employed.

In the following sections we first develop the complete field representations in the
interior and exterior regions of the cavity. The integral equation is then formulated
by requiring continuity of the tangential magnetic field across the aperture and dis-
cretized using pulse and roof-top basis functions. The evaluation of the admittance
elements is discussed in some detail since these are of crucial importance in the over-

all accuracy and efficiency of the solution. An important aspect of this chapter is
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Figure 7.1: Geometry of an open cavity recessed in a ground plane.

the presentation of a number of scattering patterns some of which are validated with

data obtained via an alternative solution method.

7.2 Full-Wave Formulation

Consider the aperture shown in Figure 7.1 illuminated by a harmonic plane wave
given by (5.36) and (5.37). This represents a two-media problem with the aperture
dividing the space into two regions, one external to the cavity (z > 0) and another in-
ternal to it (—c < z < 0). To formulate the fields scattered by the cavity, an analysis
similar to the two-dimensional case is carried out based on the equivalence princi-
ple. Accordingly, the aperture is closed by a perfect conductor and the equivalent

magnetic current
M=Exi=Exz=ZE,-JE; (7.1)

is placed on the aperture at z = 0%. The radiation of this current represents the
scattered field in the external region and by demanding continuity of the tangential

electric field, it follows that equivalent sources for the internal fields are the magnetic
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currents
M=Exfa'=Ex-z=-M (7.2)

placed across and just below the aperture at z = 0~. It remains to also enforce
continuity of the tangential magnetic field across the aperture and this will provide
the required condition for determining the magnetic currents. By denoting the fields
in the external region as (E?, H?) and those in the internal region as (E® H*), we

have
zxHM)+H"]=2xH (M), 2=0 (7.3)

where H' represents the incident magnetic field in the absence of the aperture. Upon
substitution for H* and H?, (7.3) then yields an integral equation for the equivaler;t
magnetic currents.

The external scattered field can be expressed as the surface integral
H(r) = —jk,Y, /S oM(r") - I(r; r')ds’ (7.4)

where S denotes the surface of the aperture, T is the free space dyadic Green'’s

function
- . 1 ,
L(r;r') = (I + -k—ZVV) Gp(r;r')

Also, a factor of two was introduced in (7.4) to account for the ground plane's
presence. By expanding the I’ in cartesian coordinates, (7.4) can be written more

explicitly as given by

. ok "
Hz = [ (k +6 2 +M ’y)a 6y o(r r dS 75)
HY ]

[ ,y)aay+M,,(z,y ( ) (r;r')ds’ (7.6)
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The internal fields can be written in terms of the TMzand TEzwaveguide modes.

We have
E' =E™ + ETE = —jk 2, [1 + %vv-] (9T™) — V x (507F) (7.7)
b
H® = HTM + HTE = Vv x (397™) - jkY, [1 + -kl—zvv-] (z07E) (7.8)
b

where as before, k, = Rk, is the wave number in the internal region and Z, = 1/Y;
is the intrinsic impedance of that region. The functions UTM and UTE are the wave
potentials both satisfying the wave equation

#  *F &
(83:2 toptaat kf) v=0 (7.9)

subject to the boundary conditions

E.=E, =0, z2=-c (7.10)
E.=E,=0, y=0 and y=b (7.11)
E,=E,=0, z=0 and z=a (7.12)

on the cavity walls. Referring to Figure 7.1, we have

U™ = 3= 5 Amasin (ﬂa{m) sin (Pbly) cos [k.(z + ¢)] (7.13)
m=1n=1
and
UTE = 3" 3" Bpncos (ﬂz) cos (ﬂy) sin [k.(z + ¢)]
m=0n=0 a b
excludingm=n=0 (7.14)

where A,,, and B,., are constants to be determined and k, satisfies the separation

parameter equation

2 2
() () +-s



188

Observing the restriction on the mode propagation constant v = jk, for the proper

field behavior, we demand that

Re{k.} >0

Imik,} <0

implying that

k, =k, =4

() + (32) -1 ms ()4 (

when k; is real. Substituting (7.13)-(7.14) into (7.7) we obtain

b= 5 iz (M) Ee (25)
Ez - mz'n[JZb( a) kb Amn+ b an:I

cos (Tal:c) sin (%—y) sin [kmn(2z + €)]

b= 3 iz, (B e - (=)
Ey = mz,n JZb(b) kb Amn a an]

sin (Lna—r:c) cos (n—:- ) 8in [kmn(z + )]

and
k
o - (Pl) 4 (ﬂ)ﬂ -

sin (-T%zx) cos (n_;r_y) cos [kpn(z + ¢)]

b= oy o (™ Y, (27
fy = m,n[ (a)A"‘"J“J},"(b) ks B""‘]

cos (?z) sin (%y) €08 [kpn(2z + ¢)]

B O I GO RS (C Y

(7.16)

(7.17)

(7.18)

(7.19)

(7.20)

(7.21)
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The mode coefficients Ams and B, can be expressed in terms of the equivalent

current M by enforcing the boundary conditions (7.1) and (7.2)

E.=M =-M, z=0 (7.22)

E,=-M.=M,, 2=0 (7.23)

and by invoking mode orthogonality we find

Amn = - 2]kab (Tl 2+ (ﬂ)2 B
kmnabsin (kmnc) a b
[5,, ("—b”) ™, (Tf) I;""] (7.24)
2 mr\? nry2] !
Brn = " absin (kmnc) {( a ) + (T) }
mw n nr\ ...
e (57) e () 5] (7:25)
where
mn  _ g (e N i [ T T\ g
" = _/Sﬁlr(x,y)sm( - x)cos(by)ds (7.26)
mn b o (mE N L (nT N
' = ./.;M,(:v,y)cos( - .'c)sm(by)ds (7.27)
and
1 m=0
Em = (7.28)
2 m2>1

The above expressions for the internal cavity fields are invalid when
kmn tan (knnc) =0 (7.29)

which may occur if the cavity is filled with lossless material. Hence, the modal

solution fails if there exist integers m, n, and p such that

&6 O-(5) o
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where R is the index of refraction of the material filling the cavity. As mentioned
before in connection with the two-dimensional grooves, this situation may be handled
simply by introducing a small loss in the material.

The desired systerﬁ of integral equations is now obtained based on the continu-
ity of the aperture magnetic fields (7.3), upon substitution for the pertinent field

quantities.

7.2.1 Reduction to the Two-Dimensional Case

Before we consider the numerical solution of the above integral equations, we
consider the special case of the long cavity. We show that the above formulation
reduces to that of the two-dimensional case studied in Chapter 5 when the cavity is
taken to be infinite along one aperture dimension. Although this analysis is quite
general in its application, we limit our attention to the H-polarization case here. In
particular, as b — oo, we may neglect the contribution of the transverse X-component
of the equivalent magnetic current density in favor of the dominant longitudinal y-

C o o d
component. Also, the problem is invariant in the y-direction and we set — = (.

9y
Hence, from (7.6) and (7.21) we obtain
: s W/2 had / 1 [} ' ’ /
Jim HY = -2JkoYo/ /2/ M,(z',y)Gy(z,y; 7',y )dz'dy (7.31)
and
lim H? = —2jk,Y; |~ f: fj ekl rmn (7.32)
boo Y *7 lab = & Ko tan(kond) ¥ s

Using the identity

w 1
| Guka/ar + 3y = ;HO(kJz) (7.33)
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equation (7.31) can be rewritten as

lim H

a
booo ¥

=== / M,(z)HO(k,|z — 2'|)dz’ (7.34)

which is compatible with the two-dimensional scattering integral (6.13). Further-
more, substituting for I'** and setting kmn = K = /kZ — (BE)? in (7.32) yields

b kY & Em mr
blLrgH 2 T San(k, d)S cos( :c)/ Mv(z)oos( :c)d:c (7.35)
where
2 & nx © . nT .,
Sv=73 4 Z sin(—-y) /_ sin(y)dy (7.36)

and S, should equal unity for (7.35) to reduce to the two-dimensional result (6.30).
This can be verified by invoking the distribution theory. Specifically, by interchanging

the order of summation and integration, and noting that [84]

3 sin(nmy) sin(nry’) = 6(y - v (7.37)
n=1
we find that
oo sin sin oo Ny
sv= [E il y)]dy—/ Sy-v)dy=1  (139)
-0 | =0 2 —-00

7.2.2 Numerical Solution via Galerkin’s Method

In accordance with the method of moments, the integral equation to be solved

for M is (see (7.3))

[ (22, ) — Hifz.9)] - Wiz y)ds = - [ H(e,9) - Wz,g)ds , 2=0

(7.39)

where H? = 7 x H®, H! = Z x H®, and Hi® = 7z x H*® with H® and H? as given by

(7.5)-(7.6) and (7.20)-(7.21), respectively and W(z,y) is a weighting function. To
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discretize (7.39), M is expanded in terms of subdomain basis functions
M(z,y) = 3 My, - [Z2E.(2 — 21y — ) + 556 (2 — 2,59 — 3,))] (7.40)
P9

where {; and {, are separable functions of z and y representing the expansion func-
tions in the z and y directions, respectively. Further, M,, = M,y + §M,,, are the
unknown coefficients of the basis functions. In accordance with Galerkin’s method
we will choose the weighting functions to be the same as the expansion functions,
1.e.

Za(z — ziy — y;)

W(z,y) = 9 (7.41)

ﬁfv(z —Iny - yj)
for testing at the point (z;,y;).

Solution with Piecewise Constant Basis Functions

Choosing piecewise constant basis functions, (7.40) becomes

N: Ny
M(z,y) = Z Z M, P(z — z,)P(y - Yq) (7.42)

p=1g=1

where z, = pAz — Af,yq = qAy — %", and

z| < &z
P(z) = lz] < 4
0 otherwise
(7.43)
vl < &
P(y) = :
0 otherwise
Substituting (7.42) into (7.39) yields the system
- -, - - -
)?z_}?: Y::;—Y:y M-‘l—' I;:nc
= - (7.44)

| Ye-vh v | [m | |
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where the admittance elements with the superscript a are associated with the external
fields whereas those with the superscript b are associated with the internal fields. The

external admittance elements Y%, ;3 and Y;, are given in terms of the integral

Giipg = 9(Tiy¥js TprYg) = /; / o(r,r')ds'ds
]
(7.45)
Az jAY pAT qAy
= / / / / Go(r,r')dy'dz'dydz
(i-1)Aaz J(j-1)ay J(p-1)Az J(g-1)Ay
and its second derivatives. This requires analytical evaluation when |t —pl <1 and

|7 — q| €1 and to do this, we rewrite gpq as (R=|r—-1'])

1 e 1 , ,
gim_ﬂ[s.—,/s,.,[ —ﬁ]dsds-% /U/SN ds'ds

The first integral has a nonsingular integrand for all i, j, p and ¢ and can, therefore, be

—jkoR

evaluated numerically using, for example, Gaussian integration. The second integral
has a singular integrand when i = p and j = ¢ but can be evaluated analytically to

yield

[ ) - | e -l - + B

(z =2y —y)lz—2) + @ -yl (7.46)

+y—-y)n[(z-2)+R]} -

4
R3 pAz qAy 1Az |jAy
——6—] z'=(p-1)Az ly'=(¢-1)Ay | z=(i-1)Az v=(;-1)Ay

Unfortunately, the derivatives of gij,, do not exist in analytical form. A possible
alternative is to evaluate them discretely using the computed values of gijp, and a
convenient way to do this is to employ the discrete Fourier transform. Proceeding in

this manner, we first define the sample train
Ns NI

Xii = 3 2 Giipad(Z — 25)8(y — ¥q) (7.47)

p=1g=1
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whose two-dimensional DFT will be denoted by Xi;j. Using a central difference scheme

for the derivatives, the DFT of the sample train

N: Ny P e-ikoR
=33 [ L L s ds] 8z = 2,)6(y - vy) (7.48)

with z; and y; kept constant, can be approximated as
Xii = —D2%i; (7.49)

The admittance matrix elements can then be expressed as

%Y, - -
(Y2); = —==2DFT ~ {[§? - DY %,;} (7.50)
27Y, - -
(Y;;)ij = i DFT ~' {-D.D,%;;} (7.51)

27Y,
(Ya).'j == ']7;

yz
(4

DFT ~'{-D,D.%i;} (7.52)

(va), = -% DFT ' {[k? - DZ] %;;} (7.53)

°
where DFT ~! denotes the inverse discrete Fourier transform. These give the ad-
mittance elements for the matrix row associated with the testing point (z,,y;). The
other row elements can be obtained by a simple rearrangement of this row upon
invoking the symmetry properties of the matrix.

To evaluate the admittance matrix elements associated with the cavity region we
refer to (7.20)-(7.21). Substituting the expansion (7.42) into (7.24)—(7.25) and then

into (7.39) yields

(), = CE Tl ()]

. mr . mr nn nnr
sin (T.‘C,,) sin (TI,') COs (—b-yq) Cos (Ty,-)

(7.54)
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(¥), = ~CX Tmen (55) ()

(m‘lr ) ) (mwz)si (mr ) o (mr )

—_— n{—=z;)smm|— cos | —y;

cos { ——2p si Pt p e p Y
nw

(%), = ~CZ e () (5)

. mT mm nw . nwmw
sin (2, ) cos (D) cos (rae) sim (rvs)

and
b _ 2 nr 2
(Yw)iqu - C;;nmem [k" B ( b ) ]
mr mr . (n~T . [(nT
WERERWERICS
In these
sinc? (%}Ax) sinc? (';—:Ay)
Tmn = kpn tan (kmnc)
oo Y (AzAy)?
T ko ab

and ¢, have been defined in (7.28).

It remains to compute the excitation elements (I;)’.J. and (I;) .. given by
ij

i ‘Az jAyY :

(I;'m)ij =2 -/(:—I)Az (i-1)Aw Hl(z,y,z = 0)dydz
i 1Az jAy .

(I;fnc).',' =2 ~/(:—1)Az (i=1)Av H}(z,y,z = 0)dydz.

Integrating, we obtain

( Ii’nc).'j = 2H,, eikotin Oo(xi cos do+y; sindo) A Ay

i (k,,A:c sin 8, cos ¢°) . (koAy sin 8, sin aSo)
. sinc 5 sinc 5

(7.55)

(7.56)

(7.57)

(7.58)

(7.59)

(7.60)

(7.61)

(7.62)
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and

(Ililnc),-j = 2Hoveikolin9o(zi cos $o+y;s linéo)AxAy

(7.63)

. (koAa: sin 8, cos ¢o) . (koAz sin 8, sin d)o)
- sinc 5 sinc 5

where H,, and H,, are given in (5.38).

This completes the derivation of all elements appearing in the system (7.44)
whose solution yields the current densities M; and M,. Unfortunately, the compu-
tation of the matrix elements Y ,Y? Yb and Y" requires the evaluation of double

zzs Loy

infinite summations which are slowly converging. The asymptotic behaviors of the
1 1

summation terms for Y2 and Y? are of the foorm ———— and ————

= v n2y/n? + m? mnvn? + m?’

respectively, implying that for fixed n, Y:y and Y;"z have slow convergence whereas
Y}, and Y}, are strictly non-convergent. As will be seen later, however, for long
and narrow cavities, a finite number of summation terms are sufficient to obtain
acceptable results. Nevertheless, substantial amount of computer time is required
for evaluating the mode sums given in (7.54)-(7.57) making the solution impractical
unless the convergence of the sums is improved. One way to achieve this is by using

roof-top basis functions considered next.

Solution with Piecewise Linear Basis Functions

The equivalent magnetic current components are now expanded as

M. (=, y)-ZEMrqu )P (y)

p=1 g=1
(7.64)
P Q-1

v(z,y) = EZMmP (z)To(y)

p=1 g=1
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where
(Lol DR -nagseson
T,(£) = | .(ii%%f—-—{ SAE < €< (s+1)AE (7.65)
o € — sa¢ 2 A¢
for
s=12,...,5-1 (7.66)

and P(() is the piecewise constant basis function considered before.
When these are used in (7.39) with the weighting functions the same as the
expansion functions, we obtain a system similar to (7.44). The external admittance

elements are now given by

—2]Y jAy 94y (-+1)A=' {(p+1)Az
Y2).. = '
(Yeeisn /(:-I)Av (e-1)Ay (-—1)A= /(,- 1)Az Tl=)
(7.67)
k2 + & G,(r;r')dz'dzdy'dy
° T gg2 ) Y
—2JY Ay (g+1)Ay (i+1)az pAT
Y2 = T.(y T;
( ’”)ijrq / 1)Ay/(—1)Ay o) (i-1)Az (<) /(p—l)Az'
(7.68)
62 ! ! !
520y G,(r;r')dz'dzdy'dy
—2]Y (J+1)Ay qAy (r+1)az
},d = !
( ”’)ijm ko /J—l)Ay (a— I)AV'/('UA‘ /P'I)A"' Tp(x )
(7.69)
8?2

’ ’ ’
o ByG°(r r')dz'dzdy’dy
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_2]Y (j+1)Av (g+1)Ay {Ax pAZz
Ye = —= T,(y' /
( ”")t‘jm k, -/(j—l)Ay )/ -1)Ay «(¥) (i-l)Az/(-x)A.-,
(7.70)
2 .
(k 3y2) Go(r;r')dz'dzdy’dy
The calculation of these elements may be simplified by applying integration by

parts and sampling the ‘field’ integrands at two points [50). Taking for example the

first integral, we have after integrating by parts

(Ye)ijpg = —iiYo/y/”, {kz_/zﬂ(z)/lep(x')Godx'dz

(1.71)
- [Ti@) [ TG .da'dz) dy'dy

where T, denotes the derivative of 7,. Performing midpoint integration
for the unprimed integrals by sampling at the two points [(z + ;},) Az,

( j- %) Ay] and repeating the process for the other elements yields

Vs ispg = —i¥okobzly { (€ + g)l(e +1,0)+1(6,0) - (6 - g)l(e ~1,0)

+ 2o l€=1,0 - LE+1,0) (172

+ ﬁ[z(e +1,0) = 2I(¢,{) + 1 (€ - I,C)l}

a 2] o
Y v iive =

IO+ IE+1L,O)+I(6,C-1) = I +1,( ~1)]  (7.73)

2JY

a
yr iJ'm

[FIE O+ I ¢+ D) +IE-1,0) - I(E -1, +1)]  (7.74)

and

Viine = 3¥okelaty {(C+ DIEC+ 1)+ 16,0 - (¢ - 1, ¢ - )

Wijpg
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1
t Ay [I,(¢,¢ = 1) = L(§:¢ +1)] (7.75)

2

t by

(6, +1) — 20(6,€) + (& 1)1}

where { =i —p,( =j —¢qand

! +hay pe+d)az gmikeV/F 4y dzd 776

(&¢) = /«_%m /“_%)A, oy (1.76)
(+Day pe+baz g—ikeVF+P

L(£,() = / / e dzd 7.77

(6:¢) «-3)ay Jig-daz ST~ i (7.77)

I «+1)ay /(e+§)Az e-ikox/=’+v’d P 778

AEO= [ yay Jeoron VirdTTAY 18

The above integrals can be evaluated using a four term Taylor series expansion and
are given in [50].
The evaluation of the internal elements of the admittance matrix is straightfor-

ward and yields the following expressions

. A 2
(Y:”) ijpg = C;zﬂ:ﬂmnens’ncz (%15-2—3') [k? - (Tl) ]

a

sin (anszz) sin (—";—WiA:t) (7.79)

cos [Eg-(q - 1/2)Ay] cos ['—zbl(J - 1/2)Ay]

) mm Az nr Ay\ /mn\ /nT
(Va) o = ~CZ Etmacmsine () sinc &2 E) &)

cos [ﬂa{(p - 1/2)Az] sin (-mTwiAx) (7.80)

sin (lequ) cos [-nbl(] - 1/2)Ay]
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(1) iy = ~C T tmncsine (5158 sine (2252 (22 (21)

a a

sin (Ta—prz) cos [?(i - 1/2)A:c] (7.81)

cos [n—:(q - 1/2)Ay] sin (-?jAy)
and

() = CF rmmensind (F7) [~ ()]

m

cos [—(p - 1/2)Aa:] cos [ (i - 1/2)A:z] (7.82)

sin (ﬂqu) sin (ﬂjAy) .
b b
where nm, and C are given in (7.58) and (7.59). The corresponding excitation ele-

ments are computed as

(Iinc)'_j = 2Hozejkolin0°(iAzoo¢ ¢°+(j—1/2)Aysin¢o)AxAy
(7.83)
. o (koAzsinb,cosg,\ . k,Ay sin 8, sin ¢,
- sinc sinc
2 2
(I;nC)‘j = 2Hoyejko:in0.,((:'—1/‘2)Azcou¢°+jAydn¢o)Asz
(7.84)

- sinc ( k, Az sm2 8, cos ¢o) sinc? (koAy sm2 0, sin ¢o)

We observe that the asymptotic behavior of the summation terms in (7.79)-(7.82) is
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now of the form

1

(mn)?v/n? + m?
and the double sums are therefore expected to converge rapidly. The required number

of modes for convergence within an acceptable tolerance will, of course, depend on

the geometry and electrical properties of the cavity.

7.2.3 Results and Validation

The implementation task of the presented numerical solution is a tedious one as
is usually the case with most three-dimensional numerical solutions. The validation
of the code also proved challenging because of the scarcity of reference data and
the long execution times. The calculation of mode sums constitutes the major part
of the computer processing time. As noted earlier, for a piecewise constant basis
implementation the mode sums are slowly converging and Figures 7.2 a and 7.2 b
give the convergence of the like-polarized and cross-polarized admittance elements,
respectively, for these basis functions. The double sums were computed using the
scheme discussed in [85] and the shown curves correspond to the element located at
the center of a square 1\ x 1) aperture. We observe that the mode sums for the
cross-polarization admittance elements converge rather rapidly. As expected, Y;, of
the self-cell has not converged even after adding 1000 modes in each direction in
the piecewise constant basis solution whereas only 50 modes (in each direction) are
sufficient to reach convergence when using roof-top basis functions as demonstrated
in Figures 7.2 c and 7.2 d. In general, though, for narrow and long cavities only
a few modes need be kept along the narrow dimension and this leads to a much
more rapid convergence since the double sums are essentially reduced to single sums.

In fact, for very narrow cavities, one may only keep the lowest order mode [86,
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87]. This was explored to some extent in Chapter 6. It should be noted, though,
that for long and narrow apertures the pulse basis formulation is preferable to the
roof-top one described here unless the external self-cell admittance elements are
more accurately evaluated (i.e., midpoint integration should be replaced with a more
accurate integration scheme.)

To validate the presented moment method full-wave formulations and associated
computer codes we relied on comparisons with data obtained from a corresponding
finite element-boundary integral (FEM) solution [88]. This was developed in par-
allel with the moment method/modal solution in an effort to avoid cavity shape
restrictions and the long processing time required for filling the MoM matrix. In
the Figures to follow, the RCS pattern is presented for the principal plane cuts of
the cavity-backed aperture. Figure 7.3 presents the two like- and cross-polarization
backscatter RCS patterns for a 1.73) deep cavity with @ = 0.7) and = 0.1\. These
are conical cuts and were generated with the code based on the piecewise constant
basis formulation. They are clearly in good agreement with the FEM data and have
also been found to agree with the only other [67] available calculations that appeared
recently in the literature.

Backscatter curves for a filled cavity are given in Figure 7.4. These were generated
with the code based on the roof-top basis formulation and correspond to a 0.4\ x
0.4 cavity backed aperture, 0.25) deep and filled with homogeneous material having
¢ =2 —70.5 and pu, = 1.2 — j0.1. The principal plane like-polarized RCS patterns
are again in good agreement with FEM data. Additional curves for a long and
narrow 2.5 x 0.25) cavity are given in Figures 7.5 and 7.6. They are based on the
piecewise constant basis formulation and correspond to a 0.25A deep cavity, empty or

filled with material having ¢, = 7 — J1.5 and g, = 1.8 —;0.1. Figure 7.5 presents the
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like-polarized backscatter RCS patterns for the empty cavity in both principal planes
whereas Figure 7.6 includes the corresponding patterns for the filled cavity. As seen,
the RCS patterns in the principal plane normal to the long side agree with the scaled
two-dimensional RCS data (using the conversion ( 1.26)), whereas the principal plane
patterns normal to the short side agree with the FEM data. F inally, the scattering
characteristics of a square cavity (1A x 1) x 0.52) filled with a high contrast material
(€ = 12— j2.5, 4, = 4.5 — j1.2) is shown in Figure 7.7. It is noted that for this
particular case, a sampling interval of A/15 and a total of only 50 modes in each
directions were sufficient for the MoM solution to reach the converged solution. This
is, of course, due to the fact that higher order modes are suppressed because of the

high losses in the material filling the cavity.
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Figure 7.3: Comparison of conical (6 = 40°) backscatter RCS patterns for a 0.7A x
0.1A x 1.73) empty cavity obtained from the moment method solution
using piecewise constant basis functions and the finite element method

(FEM) [67].
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Figure 7.4: Backscatter RCS elevation patterns for a 0.4} x 0.4 x 0.25\ cavity filled

with a homogeneous material (¢, = 2—;0.5, 4, = 1.2—;0.1); Comparison
of the MoM solution using piecewise linear (roof-top) basis functions with
the FEM [67].
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cavity using piecewise constant basis functions. (a) ¢ = ¢, = 0 (symbols

denote FEM results [88]). (b) ¢ = ¢, = 7/2 (symbols denote the scaled
two-dimensional RCS data).
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Figure 7.6: Backscatter RCS elevation patterns for a 2.5) x 2.5 x 0.25) filled cavity
(e, =T —j1.5,p, = 1.8 — j0.1) using piecewise constant basis functions.
(a) ¢ = ¢, = 0 (symbols denote FEM results (88]). (b) ¢ = ¢o = 7/2
(symbols denote the scaled two-dimensional RCS data).
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Scattering from a Filled Cavity
a=1A , b=1A , c=0.5\
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Figure 7.7: Backscatter RCS elevation patterns for a 1A x 1A x 0.5) cavity filled with
a high contrast material (¢, = 12 — j2.5, 4, = 4.5 — j1.2); Comparison
of the MoM solution using piecewise constant basis functions with the

FEM [88).
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7.3 GIBC Formulation

The full-wave formulation presented in the previous sections is applicable only

for the cavities of rectangular shapes and may not be employed for the analysis of

nonrectangular geometries. Furthermore, this formulation is not very efficient when

considering aperture areas larger than 1A2. Therefore, in this section, as in the two-

dimensional case, we present an approximate formulation based on a simulation of

the cavity backed apertures by an impedance insert satisfying impedance boundary

conditions. The analysis of three-dimensional impedance inserts was given in Chapter

5.

Considering first the SIBC, the relevant integral equations are (5.59) and (5.60).

Again, by setting F; = 0 in (5.64) and (5.65), we have

Fl(za y)M,(:z, y) +

and

Fi(z,y)M,(z,y) +

2pFr-1{[M.(K: - D) ~ M,D.D,) {)

2Z,H,; exp{jk, [sin 8, (z cos ¢, + ysin ¢,)]}

(7.85)
2% il o — -
k—ZDFT *{[-M.D.D, + M,(k? - D?)| €}
2Z,H,y exp{jk, [sin b, (z cos ¢, + ysin ¢,)]}

(7.86)

which may be solved by the CGFFT method.

Figure 7.8 shows a comparison of the full-wave and SIBC solutions for scattering

from the filled 1A? square cavity considered earlier. Since the filling material is of
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high contrast (e, = 12 = j2.5,p, = 4.5 — j1.2), good agreement is observed between
the two solutions. When the losses in the cavity are not sufficiently high, the SIBC
is not applicable and a higher order GIBC is required. Figure 7.9 shows the results
for a long cavity 2.5A x 2.54 x 0.25A filled by a material of lower loss (e, =7 — j1.5
and p, = 1.8 — j0.1). The second order GIBC based on equations (5.64) and (5.65)
is seen to yield an improved result for the longitudinal cut considered in this case.
For H-polarization incidence, the magnetic currents do not vanish at z = +1.25)
and thus, as noted for two-dimensional cavities, the GIBC simulation would not be
of acceptable accuracy in predicting the currents in the immediate vicinity of the
cavity edges. This is a limitation in the numerical and analytical application of
the GIBC, and stems from their non-uniqueness [89]. As noted in [90], additional
conditions must be imposed at the cavity terminations to supplement the GIBC.
Although the notion of these supplemental conditions is understood, their numerical
implementation is cumbersome and inefficient in the context of the CGFFT solution.
Thus, additional research is required before the GIBC can be employed for simulating
coatings and filled cavities with abrupt terminations. On the other hand, if the cavity
depth on the coating thickness is tapered to zero-as is often the case in practice-the
presented formulation is then directly applicable. Unfortunately, no reference data
are available for tapered three-dimensional coatings and cavities which will permit

validation of the GIBC formulation.

7.4 Summary

A full-wave moment method formulation was presented for computing the scatter-
ing by an aperture formed by a rectangular cavity in a ground plane. In constructing

the integral equations, the equivalence principle was employed to introduce equiva-
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Scattering from a Filled Cavity
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Figure 7.8: Backscatter RCS elevation patterns for a 1A x 1A x 0.5) cavity filled with
a high contrast material (¢, = 12 —J2.5,4, = 4.5 — j1.2); Comparison of
the full-wave (MoM) with the SIBC (CGF FT) solutions.
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Radar Cross Section o/)*, dB

Figure 7.9: Comparison of the E-polarization scattering patterns for the long 2.5\ x
2.5\ x 0.25) filled cavity (e, = 7 — j1.5,4, = 1.8 — §0.1) as obtained by
the full-wave and approximate formulations (longitudinal ¢ = 0° cut).
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lent magnetic currents across the cavity aperture. The fields interior and exterior to
the cavity were then expressed as the radiation of the equivalent magnetic currents
in conjunction with the modal and free space Green’s function, respectively. Cou-
pled integral equations for the two components of the magnetic currents were then
obtained by enforcing continuity of the tangential fields across the cavity. These
were discretized using Galerkin’s technique in conjunction with piecewise constant
and roof-top basis expansion functions. The resulting matrix system was solved by
LU decomposition.

The most challenging aspect of the implementation was the computation of the
slowly converging mode sums required for the evaluation of the interior admittance
elements. This is particularly so for the piecewise constant basis implementation
unless the cavity is narrow in one direction. The roof-top basis implementation pro-
vided a much more rapid convergence at the expense of complexity in the evaluation
of the external admittance elements. Nevertheless, as is usually the case with three-
dimensional moment method solutions, the presented solution demands excessive
CPU time when the aperture size is beyond one square wavelength. It is, therefore,
more applicable for smaller cavities and particularly those which are narrow in one
direction.

Next, an alternative approach based on the GIBC was presented. In this case, the
structure is essentially modelled as an impeciance insert and since this formulation
is amenable to a CGFFT solution, larger cavity-backed apertures can be handled.
For the analysis of cavities filled with electrically dense materials, very good results
were obtained when employing the SIBC. A second order GIBC was also considered
which is believed to yield acceptable results for lower contrast material fillings.

An important contribution of this Chapter was the presentation of RCS patterns
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for various empty and filled rectangular cavities and to our knowledge these are the

first validated patterns to appear in the literature for this basic cavity shape.
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Part III

VECTOR-CONCURRENT
APPLICATIONS



CHAPTER VIII

OPTIMIZATION OF THE CGFFT
ALGORITHM

8.1 Introduction

Computational electromagnetics relies heavily on vector-oriented algorithms to
simulate complex problems. With the computer technology approaching the limits
of semiconductor speeds, the exploitation of parallel processing has emerged in order
to meet the processing demands of computationally intensive applications in electro-
magnetics. Most modern computing facilities now offer vector and parallel processing
capabilities. A vector facility exploits the independence of operations, particularly
those associated with the elements in an array or vector. In such machines, instruc-
tions are vectorized and distributed across different vector processors for concurrent
execution as opposed to the traditional approach where the computers are limited
to sequential processing of data on a single scalar processing unit.

The CGFFT lends itself to efficient execution in vectorized fashion. Most oper-
ations involve array manipulations which are vectorizable. Also, several of the steps
in the iteration algorithm can be treated independently and can thus be performed
on different processors. Most importantly, since the FFT is a highly vectorizable

algorithm, it plays a major role in the speed of the solution algorithm and overall
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efficiency of the optimized code. In this chapter, a vector-concurrent form of the
CGFFT method suitable for implementation on parallel multiprocessor systems is
applied to the problem of scattering from electrically large planar structures. To
demonstrate the speéd advantage which can be realized when executing the CGFFT
solution on a vector-concurrent facility, a few tests were performed on the supercom-

puters and mini-supercomputers.
8.2 Optimization

Before an assessment of the vectorizability of the CGFFT algorithm, a brief
review of some general concepts in vector and parallel processing will be presented.
This discussion is followed by an overview of the optimized CGFFT algorithm used

in this study.

8.2.1 Vectorization

The crux of parallel computing is the process of vectorization and distributjon
of code among multiple processors. Typically, a vector instruction is capable of
operating on 32 to 128 elements of data at once, depending on the machine used,
resulting in two to four times gain in speed over the corresponding sequential scalar
instruction. Vectorization requires some degree of independence in the access of
data by the code. A dependence occurs when two statements—or iterations of the
same statement—refer to the same storage location. Some data dependences inhibit
vectorization; they are called recurrences. By changing the structure of the code, it
may be possible to eliminate a recurrence and vectorize the modified code.

A typical example of vectorization occurs when performing element by element

addition or product of two independent arrays/vectors. In a scalar machine, each
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element product or addition will be done sequentially, whereas in a vector facility
vector registers are employed to perform several of the element operations concur-
rently. That is, when a DO loop is encountered, the loop iterations are not executed
sequentially but in parallel, provided there are no data dependences among the loop
iterations. When a parallel (concurrent) facility is also available, independent op-
erations or sections of the program may be executed on different processors. In
this manner, several matrix operations involving independent vectors/arrays may be
performed in parallel.

In order to measure the improvement in the speed of a vectorized code, several
parameters are defined. The program speedup is defined as the increase in the speed
of execution when a code is run in vector mode relative to that in the scalar mode.
Therefore, referring to Figure 8.1, if a code runs for T, seconds in scalar mode and
for T, seconds in vector mode (i.e. after optimization), the corresponding program

speedup is given by
program speedup = T, /T, (8.1)

Also, the vector content of a program is that percent of the scalar code which
vectorizes. Thus, if for a given code, the scalar portion which may not be vectorized
runs in ¢, seconds, and that which is vectorizable runs in t, seconds in scalar mode

and in t,; seconds in vector mode’, we have
vector content = t,/T, x 100 (8.2)
and

vector speedup = t,/t.s (8.3)

!¢,y would be the time the code actually spends in the vector facilities.
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Scalar code Vectorizable code
t scalar
ts v execution, Ts
vector
ts tve execution, Tv

Figure 8.1: Scalar and vector execution times in a typical vectorized code.

Typically, programs with more than about 70% vector content run 1.5 to 2 times

faster in vector mode. However, as will be shown later, higher vector contents are

achievable for the case of CGFFT algorithm.

8.2.2 Concurrency

Although it is increasingly expensive to make a single processor faster, fairly fast
processors are inexpensive. Therefore using several relatively inexpensive processors
in parallel is often more efficient than using a single fast processor. A multiple
processor system can devote several processors to the execution of different parts
of a single program simultaneously. The compiler inserts protective synchronization
code into the optimized loops so that the multiple processors work together without
interfering with each other. Synchronization is needed to prevent conflicts in the
use of memory shared by parallel tasks and is considered the major cost of parallel
processing. Optimization is suppressed whenever the possibility of a data dependence

exists. Also, from Amdahl’s law the increase in the speed of execution in concurrent



223

mode as the number of processors is increased, approaches an upper limit set by the
presence of the sequential constructs in the algorithm.

In general, the concepts of data dependence in parallel processing are the same
as those in vector processing; the consequences of certain dependences, however, are
different.

A parameter of interest when processing in concurrent mode is the efficiency
of execution. Efficiency is a measure of parallelism in the algorithm. An efficient
parallel tasking system makes possible a nearly linear speedup in performance as
processors are added, if the algorithm is parallel. Thus, if T(™ denotes the time

required to run on n processors, we may define

T
concurrency speedup = T (8.4)
and
. T™)
efficiency% = Tm * 100 : (8.5)

8.3 Optimized CGFFT Algorithm

Here, the vectorizable nature of the CGFFT algorithm is exploited by identifying
the major processes involved in a given iteration. From (2.1), it can be seen that
each iteration in (2.3) requires two convolution operations, two norm calculations
and three scalar products. A considerable amount of computation time is spent in
the calculation of the convolutions carried out in A[P,] and A*[R,]. Each convo-
lution includes a pair of forward and inverse Fourier transform operations on the
relevant components of the current density vector along with a Hadamard (element
by element) multiplication of the current and the dyadic Green’s function in the

spectral domain. Since for a given current component there is no data recurrence
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at a particular point in an iteration, these operations may be vectorized to increase
the speed of calculations. The same observation is true for the computation of the
norms and the dot products used to update the current J , the residual vector R,
and the search vector P. More importantly, since the FFT is a highly vectorizable
algorithm, it plays a major role in the speed and efficiency of the optimized code.

The processing was carried out on two vector machines available at the time of
this study, namely, the Alliant FX/8 multiprocessor and the IBM 3090/600E super-
computer. Some general guidelines for code optimization are given in Appendix E
and have been followed in optimizing the CGFFT algorithm in the present study.
It should be noted that the data reported here on the actual performance of the
algorithm on a given mode of execution will be of little value, as current and future
advancements in computer technology renders them obsolete; however, it is the rel-
ative performance improvement which is of interest when the algorithm is executed
in the optimized mode as compared with the sequential mode.

To assess the efficiency of the optimized code, the rectangular plate problem
discussed in Chapter 4 was examined in some detail. Tables 8.1 and 8.2 show the
performance of the optimized CGFFT algorithm executed on the Alliant and IBM
vector facilities for computing the currents on a 2\ x 2) conducting plate. The
plate was assumed to be illuminated at normal incidence by an E-polarization plane
wave and 63 x 63 unknowns and 128 x 128 FFT pad (order 1) were employed. The
percent vectorizable code of 97% indicates a highly optimized algorithm resulting
in a program speedup of more than four times. It is clear from the tables that the
vectorized FFT is mainly responsible and contributes to the speedup in the execution
time. The performance point of the IBM supercomputer for this particular case

is given in Figure 8.2 indicating the remarkably high efficiency of the optimized



225

algorithm.

In the case of the Alliant, the overall speedup was more than 600 percent per
iteration. The speedup in execution time is even more impressive when all four
processors of the Alli..ant are utilized. As seen from Table (8.4), a speedup of 3.5 was
achieved when using four concurrent processors at an efficiency of 88%. This implies
a speedup of more than 20 times per iteration when combined with the data in Table
(8.2). Again, the improvements in the performance of the algorithm is attributed
to the vectorized FFT which is the most significant factor in the solution process.
This is illustrated in Figure 8.3 where the distribution of the CPU time among the
computationally intensive routines in the scalar and vector modes are shown.

In order to further evaluate the efficiency of the method when the size of the
problem grows, the cases of 5X x 5\ and 10\ x 10X plates were also considered with
the corresponding results reported in Tables 8.4 and 8.5. The sampling density in
these cases were 625 unknowns/A? with a FFT pad of order one. Interestingly, similar
speedups are observed for larger plates indicating that the aforementioned results
are independent of the cache memory. Figures 8.4 and 8.5 show the components
of the surface current densities excited on the conducting plates and calculated by
the CGFFT method in the vector-concurrent mode. It should be noted that the
calculation of the surface currents associated with the conducting plate in Figure 8.5
required 125,000 unknowns. This large number of unknowns presents a challenge
for direct matrix inversion approaches because of their large storage requirement. In
contrast, the CGFFT solution could be performed on a relatively small computer.

Finally, the backscattering behavior of an equilateral triangular conducting plate
of side length 5) at near grazing (conical cut at 9, = 6 = 80°) is shown in Figure

8.6. Due to the symmetry of the problem, the full-range data was replicated from
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that calculated in the range 0 < ¢ < 60°.
8.4 Summary

It was shown that the conjugate gradient FFT algorithm is suitable for vector-
concurrent optimization and may be efficiently implemented on multi-processor com-
puters. The FFT plays a crucial role in the speedup and the efficiency of such an
application. As the size of the problem becomes larger, there is a corresponding
degradation in the performance of the optimized code due to the complexity of the
memory cache references. This complexity, however, has not proven restrictive in
the examples considered because the CGFFT method does not suffer from the same
memory requirements as the direct methods do. Thus, relatively large problems can
be handled without considerable loss of efficiency and speed.

Although this study was concerned with automatic parallelization, which is lim-
ited to optimization of individual loops, parallelism at a larger granularity can be
specified by the programmer to achieve a superior performance for more complex
problems. An example of such an application is the problem of scattering by a di-
electric plate of finite thickness where the normal component of the current density
is totally independent of the planar components and can be solved for by a dedicated

processor in parallel with them.
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-
CGFFT Code u Execution Mode

Performance Scalar Vector Vector

(scalar FFT) | (scalar FFT) | (vector FFT)
1

ELAPSED CPU, sec 148 129 34
VECTOR CPU, sec - 9 30
VECTORIZABLE CODE, sec - 28 144
VECTOR CONTENT - 18.9% 97.3%

VECTOR SPEEDUP

PROGRAM SPEEDUP

Table 8.1: Performance of the scalar and vectorized code on the IBM 3090.

e
CGFFT Code Execution Mode }
Performance Scalar Vector Vector
: (scalar FFT) | (scalar FFT) (vector FFT)

INITIALIZATION, sec 2.39 0.72 0.80 |

CGFFT LOOP, sec 4307.0 1255.2 342.8

TOTAL CPU TIME, sec 4309.3 1255.9 343.6

ITERATIONS 111 111 59

PER ITERATION, sec 38.80 11.31 5.8

MEGAFLOPS 0.0527 0.1807 0.3512

PROGRAM SPEEDUP - 3.43 12.54 N

SPEEDUP/ITERATION - 3.43 6.69

Table 8.2: Performance of the scalar and vectorized code on the Alliant FX/8.
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ﬂ Optimized CGFFT “ NO. of processors

Performance 1 2 3 4
INITIALIZATION, sec 1.60 0.86 0.61 0.50

CGFFT LOOP, sec 407.4 | 211.0 | 146.7 | 115.6 \

TOTAL CPU TIME, sec || 409.0 | 211.8 | 147.3 | 116.1
ITERATIONS 59 59 59 59 ﬁ
PER ITERATION, sec 6.91 3.58 249 1.96

MEGAFLOPS 0.2951 | 0.5697 | 0.8192 | 1.0340

SPEEDUP - 1.93 2.78 3.52

EFFICIENCY

Table 8.3: Vector-Concurrent performance for a 2\ x 2\ plate.
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Figure 8.2: Performance of the optimized CGFFT algorithm on the IBM 3090.
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Figure 8.3: Distribution of the CPU time among the computationally intensive rou-
tines.
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“ Optimized CGFFT ll NO. of processors “
“ Performance ll 1 2 3 4 "

| —_'7—_7___ |
INITIALIZATION, sec 6.35 3.26 2.32 1.90

CGFFT LOOP, sec 1096.6 | 568.9 | 398.4 | 319.0
TOTAL CPU TIME, sec || 1103.0 | 572.2 | 400.7 320.9
ITERATIONS 46 46 46 46

PER ITERATION, sec 23.98 | 12.44 | 8.71 6.98

MEGAFLOPS 0.3848 | 0.7417 | 1.0590 | 1.3226
SPEEDUP - 1.93 2.75 3.43
EFFICIENCY - 96.5% | 91.7% | 85.8%

Table 8.4: Vector-Concurrent performance for a 5 x 5) plate.

“ Optimized “ NO. of processors ll
Performance 1 2 3 4 “

INITIALIZATION, sec 24.55 | 13.60 | 9.10

CGFFT LOOP, sec 3673.3 | 1973.0 | 1349.8

TOTAL CPU TIME, sec || 3697.8 | 1986.6 | 1358.9

ITERATIONS 38 38 38

PER ITERATION, sec 97.31 | 52.28 | 35.76 | 28.62

MEGAFLOPS 0.4223 | 0.7861 | 1.1492 | 1.4357
SPEEDUP - 1.86 2.72 3.40
EFFICIENCY - 93.0% | 90.7% | 85.0%

| e =

Table 8.5: Vector-Concurrent performance for a 10X x 10X plate.
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(a) Co-polarized component of the current density. (b) Cross-polarized
component of the current density.
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Figure 8.5: E-polarization plane wave scattering from a 10\ x 10\ conducting plate
at normal incidence (250 x 250 unknowns and FFT pad of order p = 1).
(a) Co-polarized component of the current density. (b) Cross-polarized
component of the current density.
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Scattering from a 5A Equilateral Triangular Plate
Conical Cut; 6=80°.
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CHAPTER IX

Conclusions

The theoretical and computational aspects related to the application of the con-
jugate gradient FFT method in computational electromagnetics have been examined.

The first Part of the thesis was devoted to the problems of electromagnetic radi-
ation and scattering from linear, cylindrical, and planar structures. Both perfectly
conducting and imperfect bodies were treated. A number of highly efficient and
accurate numerical codes have been developed for the solution of these problems.
These programs cover a broad range of operations in terms of frequency, material
composition, and structural geometry and may be used for both analysis and design
purposes.

The provisions of incorporating various expansion functions into the CGFFT
method was discussed in Chapter 2. It was found that by employing subdomain
basis functions, the convergence rate of the CGFFT method can be improved drasti-
cally. In particular, a quantitative measure of convergence improvement was estab-
lished for a class of such basis functions. Tllustrative examples of CGFFT applica-
tions to two- and three-dimensional problems were presented in Chapters 3 and 4,
respectively. Two different but related approaches in computing the integrodiffer-

ential convolutions were presented. The first approach (CGFT) was based on em-
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Ploying the sampled continuous transform of the Green’s function, while the other
(CGDFT) employed finite duration discrete Fourier transforms. The latter method
was found to provide a more efficient (and more accurate) simulation, particularly
for E-polarization cases.

Other variations in formulating the CGFFT method have appeared in the liter-
ature recently. These approaches differ primarily in the chosen (or implied) basis
functions for the unknown current density, and the method of computing the inte-
grodifferential operator in the spectral domain. Some examples of these variations
have already been discussed in this thesis. In addition to these approaches, some
authors have proposed other methods of formulating the integral equations. In par-
ticular, it has been shown that by introducing the surface charge density in the
integral formulation and expanding the vector potential instead of the current den-
sity, smoother and more stable solutions may be achieved [91].

Incorporation of the impedance boundary conditions into CGFFT was consid-
ered in Chapter 5. Advantages include the elimination of a need to sample within
the volume, further reducing the memory demand and also avoiding the difficulties
associated with the calculation of the Green’s function. Application of the gener-
alized impedance boundary conditions in modelling the two- and three-dimensional
impedance inserts was shown to be compatible with the basic CGFFT formulation,
thus allowing an efficient simulation of coated structures and filled cavity-backed
apertures.

The problems of scattering from two- and three-dimensional rectangular grooves
and cavities were studied in Part Two of the thesis. After presenting a general full-
wave analysis, approximate solutions based on the impedance boundary conditions

were considered. GIBCs of up to order 3 were employed. The formulations based
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on these boundary conditions were amenable to a CGFFT solution and were found
easier to implement than the full-wave formulation. The predicted currents based
on the GIBC simulations are in general incorrect near the edges. However, for high-
contrast material fillings, the SIBC was found adequate in modeling the groove.
Further research is needed to study the applicability of the higher order conditions
to terminated cavity and coated structures, and to establish the ranges of validity for
such applications. For the two-dimensional case, a hybrid exact-GIBC approach was
proposed which provided a good prediction of the scattering behavior of rectangular
grooves without compromising the advantages offered by CGFFT. In contrast, when
the impedance variations of the insert are sufficiently slow, a direct application of
the impedance boundary condition is sufficient.

A vector-concurrent implementation of the CGFFT method was presented in Part
Three. It was shown that the CGFFT algorithm is highly vectorizable and may be
efficiently implemented on supercomputers and multiprocessor machines. Vectoriza-
tion and parallelization of the underlying algorithms will be of great importance in
reducing the computation time and improving the efficiency of the CGFFT solution
method.

Beyond the basic applications considered in this study, the extension to three-
dimensional structures with and without anisotropy is straightforward by employing
the three-dimensional FFT. Also, the CGFFT method is directly applicable in solving
systems relating to scattering, transmission and radiation by periodic structures and
arrays. In that case, the resulting system is discrete and no need arises for corrective
measures due to discretization.

New emerging methodologies which combine the CGFFT with other numerical

techniques are of potential importance in future research. In addition to the hy-
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brid exact-GIBC solution discussed in Chapter 6, the Finite Element and CGFFT
methods can be combined to reduce the dimensionality of the required FFT and
consequently improve the efficiency of the solution process [92].

The numerical results presented in this thesis will serve two purposes. First, they
can be used as reference for future developments in this area. Second, future work
may use the various programs developed in this study to investigate the behavior
of different scatterers in an attempt to develop simple mathematical and physical
models. Since the main advantage of the CGFFT method in comparison with matrix
inversion techniques is its reduced memory demand, it is particularly useful in large

scale electromagnetic simulations.
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APPENDIX A

THE METHOD OF MOMENTS

Traditionally, equation ( 1.1) is solved directly by the Method of Moments(MoM) [20,
93]. The method of moments is a projective method in which a functional equation
in an infinite dimensional function space is approximated by a matrix equation in a
finite dimensional subspace.

Consider the linear operator equation
Alfl=g (A.1)

where A is the linear operator, g is a known function, and f is an unknown function
to be determined. In the method of moments the unknown function f is represented
approximately by a linear combination of a finite set. of functions fn in the domain

of A
N
f = chfn fn € DA (A.2)

n=1

where c, are scalars to be determined. The functions f, are known as basis or

expansion functions. Substituting (A.2) into (A.1) gives
N

Z: an[fn] >g (A3)

n=1

where the linearity of the operator has been employed. Defining the residual error R

N
R=g-3 cudlf, (A4)
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the coefficients c, are computed so that the residual error is orthogonalized, with
respect to an inner product, to a sequence of weighting functions w, defined in the

range of A

< wy,R>=0 m=1,---,N wn € R4 (A.5)

The above inner products are called the weighted residuals. This represents a system

of linear equations

N
Zc,.<wm,A[f,.] >=< Wy, g > m=1,--,N (A.6)

n=1

which can also be put in the matrix form
[Amnllca] = [9m] (A7)
where [Ama] is the matrix of elements
Amn =< Wm, Alfa] > (A.8)
and [g,,] is the column vector
gm =< W, 9 > (A.9)
If [Aa] is nonsingular, its inverse exists, and [c,] is given by
[en] = [Amn] " [gm] (A.10)
The solution f is then obtained from (A.2)
f = fa]'[Ama] " [gm] (A.11)

where [f,]' is the row vector of basis functions.
Two classical approaches have found utility in choosing the weighting functions

w,. These are referred to as the Galerkin’s method and the point matching method.
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A.1 Galerkin’s Method

Galerkin’s method may be considered as the specialization of moment method to
the case of self-adjoint operators. The adjoint operator A® is defined with respect to

the inner product as
< w, A[f] >=< A%[w], f > f€Dy, weD; (A.12)

and if the domains of A and A°® are the same, we can choose w, = f,. For self-adjoint
operators (A = A°), this choice of weighting functions makes [Am=s] a symmetric

matrix which may be desirable from a numerical standpoint.
A.2 Point Matching

If the weighting functions are formally chosen to be Dirac delta functions, equa-
tion (A.3) is satisfied at discrete points in the region of interest. This is the simplest
specialization of the moment method. The major advantage of this method is that
the integrations represented by the inner products (A.8) and (A.9) now become triv-

ial since they are evaluated at discrete points.
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APPENDIX B

THE FREE SPACE GREEN’S FUNCTION
AND ITS TRANSFORM

Consider the complex vector wave equation (Helmbholtz equation) satisfied by the

electric field in a homogeneous isotropic medium
V x V x E - k’E = —jwul (B.1)
The field may be expressed in terms of the Hertz vector potential of electric type
I(r) = _ikZ J[[ 3616w ¥ (B.2)
where G is the scalar free space Green’s function satisfying the scalar wave equation
V2G(r) + k*G(r) = —4(r) (B.3)

The Green’s function can be regarded as the response due to a point source and it
is of interest to find the Green’s function and its Fourier transform corresponding to

a line source (two dimensional case) and a point source (three dimensional case).

B.1 Line Source

For a two dimensional problem (%sz = 0), the Helmholtz equation reads

62 2
(G toat ¥)G(z,y) = —8(=)b(y) (B.4)
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Due to the axial symmetry of the problem, the wave equation can be written in

cylindrical coordinates as

(s + =5+ ¥)G(p) = ~8(s) (B.5)

where 6(p) = é(z)6(y). Outside the source region, the right hand side is zero and
(B.5) is the Bessel equation of the zeroth order. Therefore, in view of the time
convention e’“*, a solution of (B.5) representing an outgoing wave that satisfies the

radiation condition is the Hankel function of the second kind L96]/

ay

Glp) = }jﬂsﬂ(kp) (B.6)

The asymptotic expansion of the Hankel function is given by [44]

HP(kp) ~ ‘/:—kfpe-ﬂw, kp — oo (B.7)

and G shows the proper behavior in the far field.

In order to find the Fourier transform é, we write

1 00 (> < T .

09 = G L[ Gk, yeitertimar ag, (B.8)
1 00 oo -

6(z,y) B (21")2 [.oo ‘/-oo eJ(k’ +kvy)dkzdky (Bg)

and substitute these in (B.4) to obtain for all z and y we have

1
(27)?

_/_: /_:(_k: - k: + kz)é(k,, ky)ej("""‘"vv)dkzdky

L[ [ e,
T T (2r)y /_w/_m"’( tdk.dk,,  Vz,y (B.10)

Consequently, we may formally write

1
k2 -k k2

G(ks, k,) = — (B.11)
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and equivalently,

1 hd 1 j(ksx+ky
Gey) =~ /_: —wmd( +hVgk dk,  (B.12)

However, this integral is undefined for real values of k, because the poles

k, = +,/k? — k2 (B.13)

are located in the path of integration on the real k,-axis (Figure B.1). This difficulty
can be alleviated by introducing a small loss in the medium so that k = k' — jk",

and the poles are given by
by = F (K, - 3K) (B.14)

The singularities are now located off the real axis and the inverse transform (B.12)
is defined. Furthermore, in accordance with the radiation condition, we demand the

following functional form for the transform

Gtka,y) = ot (k)e™Y,  y>0 (B.15)

G (key) = ¢ (k)e™?, ¥y <0 (B.16)
where k,’f are such that

Re{k}} <0 Re{k;} >0
elkyd and etk ) (B.17)

Sm{k}} >0 Smik;} <0

The k, integral may now be carried out by contour integration in the upper and
lower half planes corresponding to y > 0 and y < 0, respectively. Using Jordan’s

Lemma and Cauchy’s theorem, we obtain

G(z,y) Lo &Y gy 0 (B.18)

,y) = — / e’**dk, > .
4§ J-oo Kk} y

Glz,y) = —— / ek dk,, <0 B.19

(z,9) 1) ) y (B.19)
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Figure B.1: Path of integration for the Fourier transform integral.

where kE are given by (B.13):

kE = Fk? — k2 (B.20)

Therefore, by uniqueness of the solution to partial differential equations satisfying

the required boundary conditions, the final result holding for all values of y is given

by
1 1 oo e-iklvl
—H®(kp) = — e*=*dk,, v B.21
g e (ko) 4mj /—oo sgn (y)k, Y (B.21)

where sgn is the signum function and k, satisfies the second of conditions (B.17).
The above equation was derived for a lossy medium (k complex) but it remains
valid for the lossless case (k real) provided the path of integration is stipulated to

avoid the singularities [94]. In this case k, should satisfy

k2 — k2 k> k,
k, = (B.22)
—iVki—k* k<k,
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In the limit as |y| — 0, we have

Re{k,} >0
Zl—,H},’)(kla:l) L §_1k_ Uk} (B.23)
J % Sm{k,} < 0

and when k is real, the Fourier transform pair is given by

kt — k> k
~ 23 -
Giklal) L { TV, T (B.24)
k <k,
2,/k2 — k?
B.2 Point Source
In the three dimensional case, the Helmholtz equation takes the form
o? & d? 2 y
oy wi W i k)G(z,y,2) = —6(z)8(y)é(2) (B.25)
Solving this equation in the spherical coordinates, gives
e—Jkr
G(r) = yp (B.26)

Following an analysis similar to the two dimensional case, the inverse Fourier trans-

form integral is introduced as

G(x7 y? z) = (zi)a ,/—Z .[-:’ ‘[-‘:) é_(kz, ky, kz)ej(k:t+k”y+kxz)dkrdkydkz

(B.27)

§(z,y,2) = (2:r)3 L [ tsrhriedid, dk, (B.28)

which upon substitution in (B.25) yields the formal expression for G

1 co oo oo 1 .
= — (ksz+kyy+kasz)
G(z.9,2) =~ /_ } /_ ; /_ P 5 dk,dk,dk,

(B.29)
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The presence of the poles

k=% /0 K-k (B.30)

in the path of integration on the real k,-axis renders the above integral undefined.
Again, introducing a small loss in the medium and following the procedure outlined
in the previous section, the &, integration may be carried out in the complex plane.
Thus, contour integration in the upper and lower half planes corresponding to z > 0

and z < 0, respectively yields

j_[® (ke
Caws) = g5 [ [ Seandk, >0 (Ba

y oo oo plkrz
G(z,y,2) = 81?/_00/ € e’("’”""”)dk,dk,,, z2<0 (B.32)

—-00 k;

where kP™ are given by

=Bk (B.33)

and they satisfy conditions similar to (B.17). Combining the two equations, we

obtain for all 2

—jkr 00 poo ~sks|z] 3
: L1 / / e—e"""*"“”)dk,dky, Vz (B.34)

drr 2—j(21r)2 -0 J-oo sgn (2)k,
where
Re{k,} >0
. (B.35)
Smik,} <0

When £, is real (lossless case), the path of integration is deformed to exclude the

real poles and (B.34) remains valid provided

Bk -k  E>ER+r
k, = (B.36)

B+ -F B<k+k
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In the limit as |z| — 0, we have

e—IkVZ +y F 1
& — (B.37)
dm /2 + 42 27k,

and when k is real the Fourier transform pair is given by

___1____ k2> k2 + k?
25, /k? — k2 — k2 £
(B.38)

é(a:,y) é 1 . .
k? < kX + k2
2,/k2 + k2 — k? Y
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APPENDIX C

MATHEMATICAL PROOFS

C.1 Proof of the Transformation (5.10)

Consider the generalized impedance boundary condition (5.1) applied to the nor-

mal field component U at the top surface (¥ = t) of the layer under study
M am U

2

- =0 (C.1)

m=0 (—Jko)m aym y=t
where @, and a/, are the GIBC constants specific to the material properties of the
layer. It is desired to replace this condition by an analogous one, applicable at the

reference plane (y = 0) as

Mo A gy
—_— =0 C.2
X TR e (€2)

This may be the case when one is interested in applying the image theory for a
coating of thickness ¢ on a ground plane.

In order to find the relation between the two sets of coefficients A,, and a,,, we
expand U at y = ¢ and its normal derivatives there in terms of the corresponding

quantities at y = 0. Hence, by invoking Maclaurin series expansion of U, we have

v = (52 vo
= g (g%) U(0) + O(tM+1 gM+1) (C.3)
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where we have retained only derivatives of at most M-th order as the original condi-

tion does not include higher order derivatives. Similarly, we have for the first normal

derivative

. M n- n
——(— -2 ( o ‘aay )U(O) + O(tM,8M+)

and generalizing this to higher orders

3”U(t) e gt M4l-p 1
oy ’,Z;(( )'ay)U“’“o(“ Ta

Substituting the above expansion back into (C.1), we obtain
M M -
m tn m an
Y =i o (———, )U(0)=o
m=0 ('_Jk ) n=m (n - m) ay
which after a simple re-arrangement of terms reduces to

Mo 1 —Jk t)" omU(0)

( -
2 —Jk)’"z Gmn gm0

m=0

The above result is in the desired form (C.2) and by inspection, we find

Z _Jkt)nam_,. ) m=0,....M

C.2 Proof of the Identity (5.52)

We would like to show that

. 0G(z,y,%57,y,2)
Iim
z—0 0z

2'=0

is a Dirac Delta function. Consider the identity (Appendix B)

I %ej*"e""'”e"""dk,dk,,
-0 Kz

R=1/$2+y2+22

(C.4)

(C.5)

(C.6)

(C.7)

(C.8)

(C.9)

(C.10)
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implying the Fourier transform relation

ejk.,R ] ejk.z
yry g (C.11)
where
(
WE+R =K | k< 1R
ky = ¢ (C.12)

k k
‘ vkI—k2—k2 | ko>,/k§+k3
in accordance with the radiation condition. Differentiating with respect to z, we

have

0

550k k) = 2ot (C.13)

whose limit as the sheet is approached is

lim —lejk'z = —l

Jm—2 3 (C.14)

Upon inverse transformation of the last equation, the desired result is obtained as

. 9G(z,y,2) _ 1
M=, — = 3%y (C.15)
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APPENDIX D

OPTIMIZATION TECHNIQUES

Once a well written code is compiled, most vector and parallel constructs are rec-
ognized by the compiler and automatically optimized for efficient execution. This is
achieved through loop level concurrency and vectorization of the sequential code. A

typical compiler’s optimization strategy may be summarized as follows:

For each innermost loop :

e If vectorizable then
o If next outer loop is parallelizable then
» Concurrent-Outer Vector-Inner
o Else
* Vector-Concurrent
o Endif
o Elseif parallelizable then
* Scalar-Concurrent
e Else
* Not Optimized

o Endif
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The fastest vector-concurrent mode of execution is achieved when all the available
processors are utilized to attack a single task concurrently with vector operations
performed on strides of data on each processor. The resulting high-performance, low-
level parallelism can significantly boost the performance of computationally intensive
operations such as Fourier transformations.

In this study the scalar and optimized FFT routines available on the IBM 3090’s
ESSL library and the Alliant’s Fortran math library were used in both scalar and vec-
tor modes. These FFT routines are written in conjunction with assembler language
and generate instructions appropriate for the architecture of the processors-they
manage data to make efficient uses of the memory hierarchy.

In addition to automatic optimization, however, most vector compilers provide
directives for additional control. Combpiler directives are user supplied control struc-
tures to override decisions made by the compiler and to give additional information
to it. Upon compilation, the directives are interpreted by the processor and con-
verted to library calls to be executed in a more efficient manner. In particular, the
associative transformation directive recognizes operations like dot products and norm
computations as reduction functions and optimizes these otherwise non-vectorizable
loops.

Some general guidelines for code optimization in various architectural levels are

given in Table D.1.
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-

ARCHITECTURAL PROGRAMMER ACTIONS!
TECHNIQUES

e

SCALAR PIPELINING | Use compiler switches (global optimization).

VECTOR PROCESSING | 1. Restructure loops and use compiler directives.

9. Maximize vector lengths by renesting, merging,
unrolling loops; largest iterates to be inside.

3. Eliminate conditionals in loops & distribute them.

4. “Supervector” loops to fill vector registers.

5. Move /O statements out of the loops.

6. Turn off vectorization for short loops,or some

vectorized loops with conditionals, dependences.

CONCURRENCY 1. Eliminate/relocate dependences, scalar
carry-arounds.

9. Restructure for Concurrent-Outer Vector-Inner.

3. Create concurrently-callable éubroutines.

4. Renest/merge loops for more concurrent iterations.

CACHE/MEMORY 1. Possible problems with strides.
ACCESS 9. Leftmost array dimension should be the largest.
4. Outer loop corresponds to the leftmost array index.

3. Process compact vectors, columns instead of rows.

4. Localize memory references.

TExtracted from IBM 3090 and Alliant FX/8 programming manuals

Table D.1: Optimization techniques.
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